All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 102198 by Study last updated on 07/Jul/20
∫xsin2x−3dx=?
Answered by mathmax by abdo last updated on 08/Jul/20
notresoluble!
Answered by Dwaipayan Shikari last updated on 08/Jul/20
∫x(sinx+3)(sinx−3)x23∫1sinx−3−1sinx−3dx−∫(∫1sin2x−3)dxx123(Ia−Ib)−∫(∫1sin2x−3)dxIa=∫1sinx−3dx=2∫dt(2tt2+1−3)(t2+1)=2∫12t−3t2−3dt=−23∫1t2−2t3+1=−23∫1(t−13)2+(23)2dt=−12tan−13t−12=−12tan−13tanx2−12Ib=∫1sinx+3=2∫1(2tt2+1+3)(t2+1)dt=23∫1t2+2t3+1=12tan−13tanx2+12x23(Ia−Ib)=−x26(tan−13tanx2+12+tan−13tanx2−12).........continueButnowwehavetointegrate∫(Ia−Ib)=−∫tan−1(23tanx221−3tan2x2−12)−∫tan−1(26tanx21−3tan2x2)........continue=−xtan−1(26tanx21−3tan2x2)+∫x6sec2x21+9tan4x2+18tan2x2x−23(Ia−Ib)−∫(Ia−Ib)=−(x+1)26(tan−1(26tanx21−3tan2x2))+∫x6sec2x21+9tan4x2+18tan2x2+Constant
Terms of Service
Privacy Policy
Contact: info@tinkutara.com