Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 1023 by 123456 last updated on 20/May/15

φ_n :R→R  n∈N^∗   φ_n =t^n (d^n φ/dt^n )  φ_1 (t)=?,φ_1 (1)=+1  φ_2 (t)=?,φ_2 (1)=−1,φ_2 ^′ (1)=+1  φ_3 (t)=?,φ_3 (1)=+1,φ_3 ^′ (1)=−1,φ_3 ^(′′) (1)=+1

$$\phi_{{n}} :\mathbb{R}\rightarrow\mathbb{R} \\ $$$${n}\in\mathbb{N}^{\ast} \\ $$$$\phi_{{n}} ={t}^{{n}} \frac{{d}^{{n}} \phi}{{dt}^{{n}} } \\ $$$$\phi_{\mathrm{1}} \left({t}\right)=?,\phi_{\mathrm{1}} \left(\mathrm{1}\right)=+\mathrm{1} \\ $$$$\phi_{\mathrm{2}} \left({t}\right)=?,\phi_{\mathrm{2}} \left(\mathrm{1}\right)=−\mathrm{1},\phi_{\mathrm{2}} ^{'} \left(\mathrm{1}\right)=+\mathrm{1} \\ $$$$\phi_{\mathrm{3}} \left({t}\right)=?,\phi_{\mathrm{3}} \left(\mathrm{1}\right)=+\mathrm{1},\phi_{\mathrm{3}} ^{'} \left(\mathrm{1}\right)=−\mathrm{1},\phi_{\mathrm{3}} ^{''} \left(\mathrm{1}\right)=+\mathrm{1} \\ $$

Commented by prakash jain last updated on 21/May/15

φ_1 (t)=t((dφ_1 (t))/dt)⇒ln y=ln t+C  φ_1 (t)=kt  φ_1 (1)=1⇒k=1  φ_1 (t)=t

$$\phi_{\mathrm{1}} \left({t}\right)={t}\frac{{d}\phi_{\mathrm{1}} \left({t}\right)}{{dt}}\Rightarrow\mathrm{ln}\:{y}=\mathrm{ln}\:{t}+{C} \\ $$$$\phi_{\mathrm{1}} \left({t}\right)={kt} \\ $$$$\phi_{\mathrm{1}} \left(\mathrm{1}\right)=\mathrm{1}\Rightarrow{k}=\mathrm{1} \\ $$$$\phi_{\mathrm{1}} \left({t}\right)={t} \\ $$

Answered by prakash jain last updated on 21/May/15

φ_2 (t)=t^2 (d^2 φ_2 /dt^2 )  t=e^x   (dφ_2 /dt)=e^(−x) (dφ_2 /dx), (d^2 φ_2 /dt)=((d^2 φ_2 /dx^2 )−(dφ_2 /dx))e^(−2x)   φ_2 =φ_2 ^(′′) −φ_2 ^′   φ_2 ^(′′) −φ_2 ^′ −φ_2 =0  characteristic equation  r^2 −r−1=0  r_1 ,r_2 =((1±(√5))/2)  φ_2 (x)=c_1 e^(r_1 x) +c_2 e^(r_2 x)   φ_2 (t)=c_1 t^r_1  +c_2 t^r_2    φ_2 (t)=−1⇒c_1 +c_2 =−1  φ_2 ′=c_1 r_1 t^(r_1 −1) +c_2 r_2 t^(r_2 −1)   φ_2 ′(1)=1  1=c_1 r_1 +c_2 r_2 =c_1 (((1+(√5))/2))−c_1 (((1−(√5))/2))−((1−(√5))/2)  1+((1−(√5))/2)=c_1 (√5)⇒c_1 =((3−(√5))/(√5))  c_2 =−1−c_1 =−1−((3−(√5))/(√5))=((2(√5)−3)/2)  φ_2 (t)=c_1 x^r_1  +c_2 x^r_2  , r_1 =((1+(√5))/2), r_2 =((1−(√5))/2)

$$\phi_{\mathrm{2}} \left({t}\right)={t}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} \phi_{\mathrm{2}} }{{dt}^{\mathrm{2}} } \\ $$$${t}={e}^{{x}} \\ $$$$\frac{{d}\phi_{\mathrm{2}} }{{dt}}={e}^{−{x}} \frac{{d}\phi_{\mathrm{2}} }{{dx}},\:\frac{{d}^{\mathrm{2}} \phi_{\mathrm{2}} }{{dt}}=\left(\frac{{d}^{\mathrm{2}} \phi_{\mathrm{2}} }{{dx}^{\mathrm{2}} }−\frac{{d}\phi_{\mathrm{2}} }{{dx}}\right){e}^{−\mathrm{2}{x}} \\ $$$$\phi_{\mathrm{2}} =\phi_{\mathrm{2}} ^{''} −\phi_{\mathrm{2}} ^{'} \\ $$$$\phi_{\mathrm{2}} ^{''} −\phi_{\mathrm{2}} ^{'} −\phi_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{characteristic}\:\mathrm{equation} \\ $$$${r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0} \\ $$$${r}_{\mathrm{1}} ,{r}_{\mathrm{2}} =\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\phi_{\mathrm{2}} \left({x}\right)={c}_{\mathrm{1}} {e}^{{r}_{\mathrm{1}} {x}} +{c}_{\mathrm{2}} {e}^{{r}_{\mathrm{2}} {x}} \\ $$$$\phi_{\mathrm{2}} \left({t}\right)={c}_{\mathrm{1}} {t}^{{r}_{\mathrm{1}} } +{c}_{\mathrm{2}} {t}^{{r}_{\mathrm{2}} } \\ $$$$\phi_{\mathrm{2}} \left({t}\right)=−\mathrm{1}\Rightarrow{c}_{\mathrm{1}} +{c}_{\mathrm{2}} =−\mathrm{1} \\ $$$$\phi_{\mathrm{2}} '={c}_{\mathrm{1}} {r}_{\mathrm{1}} {t}^{{r}_{\mathrm{1}} −\mathrm{1}} +{c}_{\mathrm{2}} {r}_{\mathrm{2}} {t}^{{r}_{\mathrm{2}} −\mathrm{1}} \\ $$$$\phi_{\mathrm{2}} '\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{1}={c}_{\mathrm{1}} {r}_{\mathrm{1}} +{c}_{\mathrm{2}} {r}_{\mathrm{2}} ={c}_{\mathrm{1}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)−{c}_{\mathrm{1}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\mathrm{1}+\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}={c}_{\mathrm{1}} \sqrt{\mathrm{5}}\Rightarrow{c}_{\mathrm{1}} =\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\sqrt{\mathrm{5}}} \\ $$$${c}_{\mathrm{2}} =−\mathrm{1}−{c}_{\mathrm{1}} =−\mathrm{1}−\frac{\mathrm{3}−\sqrt{\mathrm{5}}}{\sqrt{\mathrm{5}}}=\frac{\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{3}}{\mathrm{2}} \\ $$$$\phi_{\mathrm{2}} \left({t}\right)={c}_{\mathrm{1}} {x}^{{r}_{\mathrm{1}} } +{c}_{\mathrm{2}} {x}^{{r}_{\mathrm{2}} } ,\:{r}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}},\:{r}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com