Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 102342 by bemath last updated on 08/Jul/20

If  { ((x=2t+sin 2t)),((y=e^(sin 2t) )) :}  prove that (1/y).(dy/dx) = tan ((π/4)−t)

$${If}\:\begin{cases}{{x}=\mathrm{2}{t}+\mathrm{sin}\:\mathrm{2}{t}}\\{{y}={e}^{\mathrm{sin}\:\mathrm{2}{t}} }\end{cases} \\ $$$${prove}\:{that}\:\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dx}}\:=\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−{t}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 08/Jul/20

There is some error in question  if   x=2t−cos2t  then the prove is true

$${There}\:{is}\:{some}\:{error}\:{in}\:{question}\:\:{if}\:\:\:{x}=\mathrm{2}{t}−{cos}\mathrm{2}{t}\:\:{then}\:{the}\:{prove}\:{is}\:{true} \\ $$

Commented by bobhans last updated on 08/Jul/20

yes sir. i think something error in question

$${yes}\:{sir}.\:{i}\:{think}\:{something}\:{error}\:{in}\:{question} \\ $$

Answered by bobhans last updated on 08/Jul/20

⇒sin 2t = ln(y) ; 2 cos 2t = (1/y).(dy/dt)  (dx/dt) = 2+2cos 2t ⇒(dx/dt) = 2+(1/y).(dy/dt) ...(1)  (dy/dx) = (dy/dt)×(dt/dx) = (dy/dt)×(1/(dx/dt))   (dy/dx)= 2y cos 2t × (1/(2+2cos 2t))  (1/y) (dy/dx) = ((2cos 2t)/(2(1+cos 2t))) = ((1−2sin^2 t)/(2cos^2 t))   =(1/2)sec^2 t−tan^2 t   = (1/2)(tan^2 t−1)−tan^2 t

$$\Rightarrow\mathrm{sin}\:\mathrm{2}{t}\:=\:\mathrm{ln}\left(\mathrm{y}\right)\:;\:\mathrm{2}\:\mathrm{cos}\:\mathrm{2}{t}\:=\:\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dt}} \\ $$$$\frac{{dx}}{{dt}}\:=\:\mathrm{2}+\mathrm{2cos}\:\mathrm{2}{t}\:\Rightarrow\frac{{dx}}{{dt}}\:=\:\mathrm{2}+\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dt}}\:...\left(\mathrm{1}\right) \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{{dt}}{{dx}}\:=\:\frac{{dy}}{{dt}}×\frac{\mathrm{1}}{\frac{{dx}}{{dt}}}\: \\ $$$$\frac{{dy}}{{dx}}=\:\mathrm{2}{y}\:\mathrm{cos}\:\mathrm{2}{t}\:×\:\frac{\mathrm{1}}{\mathrm{2}+\mathrm{2cos}\:\mathrm{2}{t}} \\ $$$$\frac{\mathrm{1}}{{y}}\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2cos}\:\mathrm{2}{t}}{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{t}\right)}\:=\:\frac{\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {t}}{\mathrm{2cos}\:^{\mathrm{2}} {t}}\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:^{\mathrm{2}} {t}−\mathrm{tan}\:^{\mathrm{2}} {t}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{tan}\:^{\mathrm{2}} {t}−\mathrm{1}\right)−\mathrm{tan}\:^{\mathrm{2}} {t} \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 08/Jul/20

if  x=2t−cos2t  (dx/dt)=2+2sin2t  logy=sin2t  (1/y).(dy/dt)=2cos2t  (1/y).(dy/dx)=((2cos2t)/(2+2sin2t))=(((1−tan^2 t)/(1+tan^2 t))/(1+((2tant)/(1+tan^2 t))))=((1−tan^2 t)/((1+tant)^2 ))=((1−tant)/(1+tant))=tan((π/4)−t)

$${if}\:\:{x}=\mathrm{2}{t}−{cos}\mathrm{2}{t} \\ $$$$\frac{{dx}}{{dt}}=\mathrm{2}+\mathrm{2}{sin}\mathrm{2}{t} \\ $$$${logy}={sin}\mathrm{2}{t} \\ $$$$\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dt}}=\mathrm{2}{cos}\mathrm{2}{t} \\ $$$$\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dx}}=\frac{\mathrm{2}{cos}\mathrm{2}{t}}{\mathrm{2}+\mathrm{2}{sin}\mathrm{2}{t}}=\frac{\frac{\mathrm{1}−{tan}^{\mathrm{2}} {t}}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}}{\mathrm{1}+\frac{\mathrm{2}{tant}}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}}=\frac{\mathrm{1}−{tan}^{\mathrm{2}} {t}}{\left(\mathrm{1}+{tant}\right)^{\mathrm{2}} }=\frac{\mathrm{1}−{tant}}{\mathrm{1}+{tant}}={tan}\left(\frac{\pi}{\mathrm{4}}−{t}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com