Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102366 by bobhans last updated on 08/Jul/20

∫_0 ^(π/2)  ((cos x)/(1+cos x+sin x)) dx ?

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}\:{dx}\:? \\ $$

Answered by PRITHWISH SEN 2 last updated on 08/Jul/20

I=∫_0 ^(π/2) ((sin x)/(1+cos x+sin x))dx  2I=∫_0 ^(π/2) {1−(1/(1+cos x+sin x))}dx    = (π/2)−(1/2)∫_0 ^(π/2) ((sec^2 (x/2))/(1+tan (x/2)))dx  = (π/2)−ln∣1+tan (x/2)∣_0 ^(π/2)   = (π/2)−ln∣2∣  ∴ I= (𝛑/4) − (1/2)ln2     please check

$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{2I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}\right\}\mathrm{dx} \\ $$$$\:\:=\:\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sec}^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}}\mathrm{dx} \\ $$$$=\:\frac{\pi}{\mathrm{2}}−\mathrm{ln}\mid\mathrm{1}+\mathrm{tan}\:\frac{\mathrm{x}}{\mathrm{2}}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\:\frac{\pi}{\mathrm{2}}−\mathrm{ln}\mid\mathrm{2}\mid \\ $$$$\therefore\:\boldsymbol{\mathrm{I}}=\:\frac{\boldsymbol{\pi}}{\mathrm{4}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{ln}}\mathrm{2}\:\:\:\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$

Commented by Dwaipayan Shikari last updated on 08/Jul/20

It is right

$${It}\:{is}\:{right} \\ $$

Commented by PRITHWISH SEN 2 last updated on 08/Jul/20

sorry i made a mistake . thank you.

$$\mathrm{sorry}\:\mathrm{i}\:\mathrm{made}\:\mathrm{a}\:\mathrm{mistake}\:.\:\mathrm{thank}\:\mathrm{you}. \\ $$

Commented by bobhans last updated on 09/Jul/20

yes thank you

$${yes}\:{thank}\:{you} \\ $$

Answered by Dwaipayan Shikari last updated on 08/Jul/20

∫_0 ^(π/2) ((cosx)/(1+cosx+sinx))=∫((sinx)/(1+cosx+sinx))=I  2I=∫_0 ^(π/2) 1−(1/(1+cosx+sinx))dx  2I=(π/2)−2∫_0 ^1 (1/(1+((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 )))).(1/(1+t^2 ))dt    put   tan(x/2)=t  2I=(π/2)−2∫_0 ^1 (1/(2(1+t)))dt  2I=(π/2)−[log(1+t)]_0 ^1   2I=(π/2)−log2  I=(π/4)−(1/2)log2

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cosx}}{\mathrm{1}+{cosx}+{sinx}}=\int\frac{{sinx}}{\mathrm{1}+{cosx}+{sinx}}={I} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{cosx}+{sinx}}{dx} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:\:\:{put}\:\:\:{tan}\frac{{x}}{\mathrm{2}}={t} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{t}\right)}{dt} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}−\left[{log}\left(\mathrm{1}+{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}−{log}\mathrm{2} \\ $$$${I}=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}{log}\mathrm{2}\:\:\: \\ $$

Answered by mathmax by abdo last updated on 08/Jul/20

I =∫_0 ^(π/2)  ((cosx)/(1+cosx +sinx))dx cha7gement tan((x/2))=t give  I =∫_0 ^1  (((1−t^2 )/(1+t^2 ))/(1+((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 ))))×((2dt)/(1+t^2 )) =2∫_0 ^1  ((1−t^2 )/((1+t^2  +1−t^2  +2t)(t^2 +1)))dt  =∫_0 ^1  ((1−t^2 )/((t+1)(t^2 +1)))dt =∫_0 ^(1 ) ((1−t)/(t^2  +1))dt =∫_0 ^1  (dt/(t^2  +1)) −(1/2)∫_0 ^1  ((2t)/(t^2  +1))dt  =[arctan(t)]_0 ^1  −(1/2) [ln(t^2  +1)]_0 ^1  =(π/4)−((ln(2))/2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cosx}}{\mathrm{1}+\mathrm{cosx}\:+\mathrm{sinx}}\mathrm{dx}\:\mathrm{cha7gement}\:\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}{\mathrm{1}+\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:+\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }}×\frac{\mathrm{2dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}−\mathrm{t}^{\mathrm{2}} \:+\mathrm{2t}\right)\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\left(\mathrm{t}+\mathrm{1}\right)\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}\:} \frac{\mathrm{1}−\mathrm{t}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2t}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt} \\ $$$$=\left[\mathrm{arctan}\left(\mathrm{t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\frac{\mathrm{1}}{\mathrm{2}}\:\left[\mathrm{ln}\left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com