Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 102474 by pticantor last updated on 09/Jul/20

Un=(1+(√2))^n   show that we have p_n ∈N /  U_n =(√p_n )+(√(p_n +1))

$$\boldsymbol{{U}}{n}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}} \\ $$$${show}\:{that}\:{we}\:{have}\:\boldsymbol{{p}}_{\boldsymbol{{n}}} \in\mathbb{N}\:/ \\ $$$$\boldsymbol{{U}}_{\boldsymbol{{n}}} =\sqrt{{p}_{{n}} }+\sqrt{{p}_{{n}} +\mathrm{1}} \\ $$

Answered by ~blr237~ last updated on 09/Jul/20

 observe that (1/U_n )=(−1)^n (1−(√2))^n   and that there exist   a_n  ,b_n ∈N  such as   U_n =a_n +b_n (√2)    and  (1/U_n )=(−1)^n (a_n −b_n (√2))  and  U_n ^2 =U_(2n)  .  So  (U_n ^ +(1/U_n ))^2 = 2+U_(2n) +(1/U_(2n) )=2 +2a_(2n)    (U_n −(1/U_n ))^2 =−2+U_(2n) +(1/U_(2n) ) =−2+2a_(2n)   we have  a_(n+1) +b_(n+1) (√2) =(1+(√2))(a_n +b_n (√2) ) lead to  a_(n+1) =a_n +2b_n  . So  such as a_1 =1 (odd ) , a_n  is always odd   So there exist  c_n  ∈N  / a_n =2c_n +1  Then    (U_n +(1/U_n ))^2 =2+2(2c_(2n) +1)=4(c_(2n) +1)   (U_n −(1/U_n ))^2 =−2+2(2c_(2n) +1)=4c_(2n)    By adding the two square root   U_n =(√c_(2n) ) +(√(c_(2n) +1))    take  p_n =c_(2n)

$$\:{observe}\:{that}\:\frac{\mathrm{1}}{{U}_{{n}} }=\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{1}−\sqrt{\mathrm{2}}\right)^{{n}} \:\:{and}\:{that}\:{there}\:{exist}\: \\ $$$${a}_{{n}} \:,{b}_{{n}} \in\mathbb{N}\:\:{such}\:{as}\:\:\:{U}_{{n}} ={a}_{{n}} +{b}_{{n}} \sqrt{\mathrm{2}}\:\:\:\:{and}\:\:\frac{\mathrm{1}}{{U}_{{n}} }=\left(−\mathrm{1}\right)^{{n}} \left({a}_{{n}} −{b}_{{n}} \sqrt{\mathrm{2}}\right) \\ $$$${and}\:\:{U}_{{n}} ^{\mathrm{2}} ={U}_{\mathrm{2}{n}} \:. \\ $$$${So}\:\:\left({U}_{{n}} ^{} +\frac{\mathrm{1}}{{U}_{{n}} }\right)^{\mathrm{2}} =\:\mathrm{2}+{U}_{\mathrm{2}{n}} +\frac{\mathrm{1}}{{U}_{\mathrm{2}{n}} }=\mathrm{2}\:+\mathrm{2}{a}_{\mathrm{2}{n}} \: \\ $$$$\left({U}_{{n}} −\frac{\mathrm{1}}{{U}_{{n}} }\right)^{\mathrm{2}} =−\mathrm{2}+{U}_{\mathrm{2}{n}} +\frac{\mathrm{1}}{{U}_{\mathrm{2}{n}} }\:=−\mathrm{2}+\mathrm{2}{a}_{\mathrm{2}{n}} \\ $$$${we}\:{have}\:\:{a}_{{n}+\mathrm{1}} +{b}_{{n}+\mathrm{1}} \sqrt{\mathrm{2}}\:=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\left({a}_{{n}} +{b}_{{n}} \sqrt{\mathrm{2}}\:\right)\:{lead}\:{to} \\ $$$${a}_{{n}+\mathrm{1}} ={a}_{{n}} +\mathrm{2}{b}_{{n}} \:.\:{So}\:\:{such}\:{as}\:{a}_{\mathrm{1}} =\mathrm{1}\:\left({odd}\:\right)\:,\:{a}_{{n}} \:{is}\:{always}\:{odd}\: \\ $$$${So}\:{there}\:{exist}\:\:{c}_{{n}} \:\in\mathbb{N}\:\:/\:{a}_{{n}} =\mathrm{2}{c}_{{n}} +\mathrm{1} \\ $$$${Then}\:\:\:\:\left({U}_{{n}} +\frac{\mathrm{1}}{{U}_{{n}} }\right)^{\mathrm{2}} =\mathrm{2}+\mathrm{2}\left(\mathrm{2}{c}_{\mathrm{2}{n}} +\mathrm{1}\right)=\mathrm{4}\left({c}_{\mathrm{2}{n}} +\mathrm{1}\right) \\ $$$$\:\left({U}_{{n}} −\frac{\mathrm{1}}{{U}_{{n}} }\right)^{\mathrm{2}} =−\mathrm{2}+\mathrm{2}\left(\mathrm{2}{c}_{\mathrm{2}{n}} +\mathrm{1}\right)=\mathrm{4}{c}_{\mathrm{2}{n}} \: \\ $$$${By}\:{adding}\:{the}\:{two}\:{square}\:{root}\: \\ $$$${U}_{{n}} =\sqrt{{c}_{\mathrm{2}{n}} }\:+\sqrt{{c}_{\mathrm{2}{n}} +\mathrm{1}}\:\:\:\:{take}\:\:{p}_{{n}} ={c}_{\mathrm{2}{n}} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com