All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 102490 by ajfour last updated on 09/Jul/20
x3−bx−c=0;b,c>0;(b3)3>(c2)2 Tofindthethreerealrootswithout theuseoftrigonometricsolution tocubicpolynomial...
Answered by ajfour last updated on 10/Jul/20
letz=xb,a=cbb Asc2<bb33⇒a<233 ⇒z3−z−a=0 Nowlet(z−1)(z3−z−a)=0 z4−z3−z2+(1−a)z+a=0 Nowletz=t+st+1⇒ (t4+4st3+6s2t2+4s3t+s4) −(t+1)(t3+3st2+3s2t+s3) −(t2+2t+1)(t2+2st+s2) +(1−a)(t+s)(t3+3t2+3t+1) +a(t4+4t3+6t2+4t+1)=0 ⇒ t3{4s−3s−1−2s−2+3(1−a) +s(1−a)+4a}+ t2{6s2−3s2−3s−s2−4s−1 +3(1−a)+3s(1−a)+6a}+ t{4s3−s3−3s2−2s2−2s +(1−a)+3s(1−a)+4a}+ {s4−s3−s2+s(1−a)+a}=0 ⇒ t3{a(1−s)}+t2{2s2−s(4+3a)+3a+2} +t{s3−5s2−(3a−1)s+3a+1} +{s4−s3−s2+s(1−a)+a}=0 Nowlet2s2−s(4+3a)+3a+2=0 ⇒s=3a+42±(3a+4)2−2(3a+2)2 =3a+4±(3a+4)2−2(3a+4)+42 =3(a+1)+1±9(a+1)2+32 Now t3+t{s3−5s2−(3a−1)s+3a+1a(1−s)} +{s4−s3−s2+s(1−a)+aa(1−s)}=0 ⇒t3+t{s3−5s2−(3a−1)s+3a+1a(1−s)} −1a(s3−s−a)=0 ⇒t3+ta{(s+3)2+3a+4(2−ss−1)} −1a(s3−s−a)=0 letssayaboveexpressionis t3+(pa)t−qa=0 wecanapplyCardano′sformulaif p>0;sayt=t0,then z0=t0+st0+1andx=b(z0) ....... letscheckthesignof p=(s+3)2+3a+4(2−ss−1)where s=3(a+1)+1±9(a+1)2+32 anda<233 (someonepleasehelphere... canpbe>0foroneofthetwo valuesofs?)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com