Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 102490 by ajfour last updated on 09/Jul/20

x^3 −bx−c=0     ;  b, c >0 ;  ((b/3))^3 >((c/2))^2   To find the three real roots without  the use of trigonometric solution  to cubic polynomial...

x3bxc=0;b,c>0;(b3)3>(c2)2 Tofindthethreerealrootswithout theuseoftrigonometricsolution tocubicpolynomial...

Answered by ajfour last updated on 10/Jul/20

let  z=(x/(√b)) , a=(c/(b(√b)))    As   (c/2)<((b(√b))/(3(√3)))   ⇒   a<(2/(3(√3)))  ⇒  z^3 −z−a=0  Now let    (z−1)(z^3 −z−a)=0      z^4 −z^3 −z^2 +(1−a)z+a=0  Now let z=((t+s)/(t+1))   ⇒   (t^4 +4st^3 +6s^2 t^2 +4s^3 t+s^4 )  −(t+1)(t^3 +3st^2 +3s^2 t+s^3 )  −(t^2 +2t+1)(t^2 +2st+s^2 )  +(1−a)(t+s)(t^3 +3t^2 +3t+1)  +a(t^4 +4t^3 +6t^2 +4t+1)=0  ⇒  t^3 {4s−3s−1−2s−2+3(1−a)         +s(1−a)+4a}+  t^2 {6s^2 −3s^2 −3s−s^2 −4s−1        +3(1−a)+3s(1−a)+6a}+  t{4s^3 −s^3 −3s^2 −2s^2 −2s       +(1−a)+3s(1−a)+4a}+     {s^4 −s^3 −s^2 +s(1−a)+a} = 0  ⇒     t^3 {a(1−s)}+t^2 {2s^2 −s(4+3a)+3a+2}  +t{s^3 −5s^2 −(3a−1)s+3a+1}  +{s^4 −s^3 −s^2 +s(1−a)+a}=0  Now let   2s^2 −s(4+3a)+3a+2=0  ⇒   s=((3a+4)/2)±((√((3a+4)^2 −2(3a+2)))/2)            = ((3a+4±(√((3a+4)^2 −2(3a+4)+4)))/2)            =((3(a+1)+1±(√(9(a+1)^2 +3)))/2)     Now         t^3 +t{((s^3 −5s^2 −(3a−1)s+3a+1)/(a(1−s)))}         +{((s^4 −s^3 −s^2 +s(1−a)+a)/(a(1−s)))}= 0  ⇒  t^3 +t{((s^3 −5s^2 −(3a−1)s+3a+1)/(a(1−s)))}             −(1/a)(s^3 −s−a) = 0  ⇒  t^3 +(t/a){(s+3)^2 +3a+4(((2−s)/(s−1)))}             −(1/a)(s^3 −s−a) = 0  lets say above expression is            t^3 +((p/a))t−(q/a)=0  we can apply Cardano′s formula if  p>0 ;  say t=t_0   , then              z_0 =((t_0 +s)/(t_0 +1))    and  x=(√b)(z_0 )  .......  lets check the sign of     p = (s+3)^2 +3a+4(((2−s)/(s−1)))    where           s =((3(a+1)+1±(√(9(a+1)^2 +3)))/2)          and a<(2/(3(√3)))  (someone please help here...      can p be >0 for one of the two      values of s ? )

letz=xb,a=cbb Asc2<bb33a<233 z3za=0 Nowlet(z1)(z3za)=0 z4z3z2+(1a)z+a=0 Nowletz=t+st+1 (t4+4st3+6s2t2+4s3t+s4) (t+1)(t3+3st2+3s2t+s3) (t2+2t+1)(t2+2st+s2) +(1a)(t+s)(t3+3t2+3t+1) +a(t4+4t3+6t2+4t+1)=0 t3{4s3s12s2+3(1a) +s(1a)+4a}+ t2{6s23s23ss24s1 +3(1a)+3s(1a)+6a}+ t{4s3s33s22s22s +(1a)+3s(1a)+4a}+ {s4s3s2+s(1a)+a}=0 t3{a(1s)}+t2{2s2s(4+3a)+3a+2} +t{s35s2(3a1)s+3a+1} +{s4s3s2+s(1a)+a}=0 Nowlet2s2s(4+3a)+3a+2=0 s=3a+42±(3a+4)22(3a+2)2 =3a+4±(3a+4)22(3a+4)+42 =3(a+1)+1±9(a+1)2+32 Now t3+t{s35s2(3a1)s+3a+1a(1s)} +{s4s3s2+s(1a)+aa(1s)}=0 t3+t{s35s2(3a1)s+3a+1a(1s)} 1a(s3sa)=0 t3+ta{(s+3)2+3a+4(2ss1)} 1a(s3sa)=0 letssayaboveexpressionis t3+(pa)tqa=0 wecanapplyCardanosformulaif p>0;sayt=t0,then z0=t0+st0+1andx=b(z0) ....... letscheckthesignof p=(s+3)2+3a+4(2ss1)where s=3(a+1)+1±9(a+1)2+32 anda<233 (someonepleasehelphere... canpbe>0foroneofthetwo valuesofs?)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com