Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 102576 by MAB last updated on 10/Jul/20

let A_1 A_2 ...A_n   a regular polygon of n sides  with length l each, let X a point such  that A_1 X=x∙l where 0<x<1 (as shown)  what is the length of the shortest path  begins fromX touching all sides once  and ends at X  (there′s a problem shape can′t be loaded)

$${let}\:{A}_{\mathrm{1}} {A}_{\mathrm{2}} ...{A}_{{n}} \:\:{a}\:{regular}\:{polygon}\:{of}\:{n}\:{sides} \\ $$ $${with}\:{length}\:{l}\:{each},\:{let}\:{X}\:{a}\:{point}\:{such} \\ $$ $${that}\:{A}_{\mathrm{1}} {X}={x}\centerdot{l}\:{where}\:\mathrm{0}<{x}<\mathrm{1}\:\left({as}\:{shown}\right) \\ $$ $${what}\:{is}\:{the}\:{length}\:{of}\:{the}\:{shortest}\:{path} \\ $$ $${begins}\:{fromX}\:{touching}\:{all}\:{sides}\:{once} \\ $$ $${and}\:{ends}\:{at}\:{X} \\ $$ $$\left({there}'{s}\:{a}\:{problem}\:{shape}\:{can}'{t}\:{be}\:{loaded}\right) \\ $$

Answered by mr W last updated on 10/Jul/20

2{nx+(l−2x)⌊(n/2)⌋}cos (((180°)/n))

$$\mathrm{2}\left\{{nx}+\left({l}−\mathrm{2}{x}\right)\lfloor\frac{{n}}{\mathrm{2}}\rfloor\right\}\mathrm{cos}\:\left(\frac{\mathrm{180}°}{{n}}\right) \\ $$

Commented byMAB last updated on 10/Jul/20

any demonstration sir?

$${any}\:{demonstration}\:{sir}? \\ $$

Commented bymr W last updated on 10/Jul/20

answer correct?

$${answer}\:{correct}? \\ $$

Commented byMAB last updated on 10/Jul/20

seems to be correct sir

$${seems}\:{to}\:{be}\:{correct}\:{sir} \\ $$

Answered by mr W last updated on 10/Jul/20

let′s say the path starts at point B_1 (=X)  and touches the other sides at points  B_2 ,B_3 ,...,B_n . the path is also a n side  polygon.  the shortest path is that one which  a light ray follows from B_1  to B_1   when reflected by all sides of the  regular polygon as mirrors.  if n is even, we can easily see which  path the light ray will follow, that′s  what the following diagram shows.

$${let}'{s}\:{say}\:{the}\:{path}\:{starts}\:{at}\:{point}\:{B}_{\mathrm{1}} \left(={X}\right) \\ $$ $${and}\:{touches}\:{the}\:{other}\:{sides}\:{at}\:{points} \\ $$ $${B}_{\mathrm{2}} ,{B}_{\mathrm{3}} ,...,{B}_{{n}} .\:{the}\:{path}\:{is}\:{also}\:{a}\:{n}\:{side} \\ $$ $${polygon}. \\ $$ $${the}\:{shortest}\:{path}\:{is}\:{that}\:{one}\:{which} \\ $$ $${a}\:{light}\:{ray}\:{follows}\:{from}\:{B}_{\mathrm{1}} \:{to}\:{B}_{\mathrm{1}} \\ $$ $${when}\:{reflected}\:{by}\:{all}\:{sides}\:{of}\:{the} \\ $$ $${regular}\:{polygon}\:{as}\:{mirrors}. \\ $$ $${if}\:{n}\:{is}\:{even},\:{we}\:{can}\:{easily}\:{see}\:{which} \\ $$ $${path}\:{the}\:{light}\:{ray}\:{will}\:{follow},\:{that}'{s} \\ $$ $${what}\:{the}\:{following}\:{diagram}\:{shows}. \\ $$

Commented bymr W last updated on 10/Jul/20

Commented bymr W last updated on 10/Jul/20

let A_1 B_1 =x  θ=180°−((360°)/n)  b_1 =b_3 =b_5 =...=b_(n−1) =2x sin (θ/2)=2x cos ((180°)/n)  b_2 =b_4 =b_6 =...=b_n =2(l−x) sin (θ/2)=2(l−x) cos ((180°)/n)  total length of the shortest path is  therefore  L_(min) =(n/2)×2(x+l−x) cos ((180°)/n)  ⇒L_(min) =nl cos ((180°)/n)

$${let}\:{A}_{\mathrm{1}} {B}_{\mathrm{1}} ={x} \\ $$ $$\theta=\mathrm{180}°−\frac{\mathrm{360}°}{{n}} \\ $$ $${b}_{\mathrm{1}} ={b}_{\mathrm{3}} ={b}_{\mathrm{5}} =...={b}_{{n}−\mathrm{1}} =\mathrm{2}{x}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}{x}\:\mathrm{cos}\:\frac{\mathrm{180}°}{{n}} \\ $$ $${b}_{\mathrm{2}} ={b}_{\mathrm{4}} ={b}_{\mathrm{6}} =...={b}_{{n}} =\mathrm{2}\left({l}−{x}\right)\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}\left({l}−{x}\right)\:\mathrm{cos}\:\frac{\mathrm{180}°}{{n}} \\ $$ $${total}\:{length}\:{of}\:{the}\:{shortest}\:{path}\:{is} \\ $$ $${therefore} \\ $$ $${L}_{{min}} =\frac{{n}}{\mathrm{2}}×\mathrm{2}\left({x}+{l}−{x}\right)\:\mathrm{cos}\:\frac{\mathrm{180}°}{{n}} \\ $$ $$\Rightarrow{L}_{{min}} ={nl}\:\mathrm{cos}\:\frac{\mathrm{180}°}{{n}} \\ $$

Commented bymr W last updated on 10/Jul/20

if n is odd, the path of the light ray  follows from B_1  to B_1  is not so easily  to determine. we need some new  consideration.

$${if}\:{n}\:{is}\:{odd},\:{the}\:{path}\:{of}\:{the}\:{light}\:{ray} \\ $$ $${follows}\:{from}\:{B}_{\mathrm{1}} \:{to}\:{B}_{\mathrm{1}} \:{is}\:{not}\:{so}\:{easily} \\ $$ $${to}\:{determine}.\:{we}\:{need}\:{some}\:{new} \\ $$ $${consideration}. \\ $$

Commented byMAB last updated on 10/Jul/20

perfect sir

$${perfect}\:{sir} \\ $$

Commented bymr W last updated on 10/Jul/20

Commented bymr W last updated on 10/Jul/20

this is a possible path, but it is not  the shortest, because it doesn′t  follow a light ray′s path.  b^2 =x^2 +(l−x)^2 +2x(l−x)cos θ  b^2 =l^2 −2x(l−x)(1+cos ((360°)/n))  L=nb=n(√(l^2 −2x(l−x)(1+cos ((360°)/n))))  ......

$${this}\:{is}\:{a}\:{possible}\:{path},\:{but}\:{it}\:{is}\:{not} \\ $$ $${the}\:{shortest},\:{because}\:{it}\:{doesn}'{t} \\ $$ $${follow}\:{a}\:{light}\:{ray}'{s}\:{path}. \\ $$ $${b}^{\mathrm{2}} ={x}^{\mathrm{2}} +\left({l}−{x}\right)^{\mathrm{2}} +\mathrm{2}{x}\left({l}−{x}\right)\mathrm{cos}\:\theta \\ $$ $${b}^{\mathrm{2}} ={l}^{\mathrm{2}} −\mathrm{2}{x}\left({l}−{x}\right)\left(\mathrm{1}+\mathrm{cos}\:\frac{\mathrm{360}°}{{n}}\right) \\ $$ $${L}={nb}={n}\sqrt{{l}^{\mathrm{2}} −\mathrm{2}{x}\left({l}−{x}\right)\left(\mathrm{1}+\mathrm{cos}\:\frac{\mathrm{360}°}{{n}}\right)} \\ $$ $$...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com