Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 102816 by mr W last updated on 11/Jul/20

How many 6 digit numbers exist  whose digits have exactly the sum 13?    for example 120505 is such a number.

$${How}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{exist} \\ $$$${whose}\:{digits}\:{have}\:{exactly}\:{the}\:{sum}\:\mathrm{13}? \\ $$$$ \\ $$$${for}\:{example}\:\mathrm{120505}\:{is}\:{such}\:{a}\:{number}. \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Universal Set  {0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,                                  4,4,4,5,5,6,6,7,8,9}

$$\mathrm{Universal}\:\mathrm{Set} \\ $$$$\left\{\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3},\mathrm{3},\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{5},\mathrm{5},\mathrm{6},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9}\right\} \\ $$

Commented by aurpeyz last updated on 11/Jul/20

660100 508000 309000...it will be much o. how should this be[done?

$$\mathrm{660100}\:\mathrm{508000}\:\mathrm{309000}...\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:\mathrm{much}\:\mathrm{o}.\:\mathrm{how}\:\mathrm{should}\:\mathrm{this}\:\mathrm{be}\left[\mathrm{done}?\right. \\ $$

Commented by mr W last updated on 11/Jul/20

Rasheed sir: i don′t know much  about set methods. can you give some  explanation and how to arrive at the  result? thanks!

$${Rasheed}\:{sir}:\:{i}\:{don}'{t}\:{know}\:{much} \\ $$$${about}\:{set}\:{methods}.\:{can}\:{you}\:{give}\:{some} \\ $$$${explanation}\:{and}\:{how}\:{to}\:{arrive}\:{at}\:{the} \\ $$$${result}?\:{thanks}! \\ $$

Commented by mr W last updated on 11/Jul/20

i see, thanks! do you have other ideas?

$${i}\:{see},\:{thanks}!\:{do}\:{you}\:{have}\:{other}\:{ideas}? \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Sir, actually it′s not much  helpfull,I think now.I only    extended the set{0,1,2,...,9} by  writing maximum possible   occurigs of each digit in the   required numbers.

$${Sir},\:{actually}\:{it}'{s}\:{not}\:{much} \\ $$$${helpfull},{I}\:{think}\:{now}.{I}\:{only}\:\: \\ $$$${extended}\:{the}\:{set}\left\{\mathrm{0},\mathrm{1},\mathrm{2},...,\mathrm{9}\right\}\:{by} \\ $$$${writing}\:{maximum}\:{possible}\: \\ $$$${occurigs}\:{of}\:{each}\:{digit}\:{in}\:{the}\: \\ $$$${required}\:{numbers}. \\ $$

Commented by mr W last updated on 11/Jul/20

i got 6027 such numbers.

$${i}\:{got}\:\mathrm{6027}\:{such}\:{numbers}. \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Sir I thought to attack the  problem as follows:  (i) To determine the number  of partions(in an order)  of 13 using above ′universal set′  {0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,           4,4,4,5,5,6,6,7,8,9}  (ii)To determine number of  ′permutations′ of each  partitions.  (iii)After than number of  excluding unwanted numbers.       I am not confident of these  ideas.You can do better.

$${Sir}\:{I}\:{thought}\:{to}\:{attack}\:{the} \\ $$$${problem}\:{as}\:{follows}: \\ $$$$\left({i}\right)\:\mathcal{T}{o}\:{determine}\:{the}\:{number} \\ $$$${of}\:{partions}\left({in}\:{an}\:{order}\right) \\ $$$${of}\:\mathrm{13}\:{using}\:{above}\:'{universal}\:{set}' \\ $$$$\left\{\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3},\mathrm{3},\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{5},\mathrm{5},\mathrm{6},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9}\right\} \\ $$$$\left({ii}\right)\mathcal{T}{o}\:{determine}\:{number}\:{of} \\ $$$$'{permutations}'\:{of}\:{each} \\ $$$${partitions}. \\ $$$$\left({iii}\right){After}\:{than}\:{number}\:{of} \\ $$$${excluding}\:{unwanted}\:{numbers}. \\ $$$$\:\:\:\:\:{I}\:{am}\:{not}\:{confident}\:{of}\:{these} \\ $$$${ideas}.{You}\:{can}\:{do}\:{better}. \\ $$

Commented by prakash jain last updated on 11/Jul/20

This method i think is known as generating function method, used in problem involving coins etc.

Commented by prakash jain last updated on 11/Jul/20

Thanks. I will recheck calculation  for both methods.

$$\mathrm{Thanks}.\:\mathrm{I}\:\mathrm{will}\:\mathrm{recheck}\:\mathrm{calculation} \\ $$$$\mathrm{for}\:\mathrm{both}\:\mathrm{methods}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

Sir itis really hard . But I might find a different  way.  For instance let find the 3 digits numbers in between  100 and 200 whose digit sum is 12   Sum of digits         Numbers  1 −−−−100  2−−−−101−−−−110  3−−−−102−−−−111−−−−120  4−−−−103−−−−112−−−−121−−−−130  5−−−−104−−−−113−−−−122−−−−131  6−−−−105−−−−114−−−−123−−−−132  7−−−−106−−−−115−−−−124−−−−133  8−−−−107−−−−116−−−−125−−−−134  9−−−−108−−−−117−−−−126−−−−135  10−−− 109−−−−118−−−− 127−−−−136  11−−−−−−−−−119−−−−128−−−−137  12−−−−−−−−−−−−−−−129−−−−138  and so on..  so the first number is 129 and the last number   is 129+9×n<200  n=7  ∴ no. of 3 digits number whose sum is 12 is  = 7+1=8  sir is it can be helpful for such problems ?  Sir Rasheed and Mr.Wsir please share your  comments.

$$\mathrm{Sir}\:\mathrm{itis}\:\mathrm{really}\:\mathrm{hard}\:.\:\mathrm{But}\:\mathrm{I}\:\mathrm{might}\:\mathrm{find}\:\mathrm{a}\:\mathrm{different} \\ $$$$\mathrm{way}. \\ $$$$\mathrm{For}\:\mathrm{instance}\:\mathrm{let}\:\mathrm{find}\:\mathrm{the}\:\mathrm{3}\:\mathrm{digits}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{between} \\ $$$$\mathrm{100}\:\mathrm{and}\:\mathrm{200}\:\mathrm{whose}\:\mathrm{digit}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{12}\: \\ $$$$\boldsymbol{\mathrm{Sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{digits}}\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Numbers}} \\ $$$$\mathrm{1}\:−−−−\mathrm{100} \\ $$$$\mathrm{2}−−−−\mathrm{101}−−−−\mathrm{110} \\ $$$$\mathrm{3}−−−−\mathrm{102}−−−−\mathrm{111}−−−−\mathrm{120} \\ $$$$\mathrm{4}−−−−\mathrm{103}−−−−\mathrm{112}−−−−\mathrm{121}−−−−\mathrm{130} \\ $$$$\mathrm{5}−−−−\mathrm{104}−−−−\mathrm{113}−−−−\mathrm{122}−−−−\mathrm{131} \\ $$$$\mathrm{6}−−−−\mathrm{105}−−−−\mathrm{114}−−−−\mathrm{123}−−−−\mathrm{132} \\ $$$$\mathrm{7}−−−−\mathrm{106}−−−−\mathrm{115}−−−−\mathrm{124}−−−−\mathrm{133} \\ $$$$\mathrm{8}−−−−\mathrm{107}−−−−\mathrm{116}−−−−\mathrm{125}−−−−\mathrm{134} \\ $$$$\mathrm{9}−−−−\mathrm{108}−−−−\mathrm{117}−−−−\mathrm{126}−−−−\mathrm{135} \\ $$$$\mathrm{10}−−−\:\mathrm{109}−−−−\mathrm{118}−−−−\:\mathrm{127}−−−−\mathrm{136} \\ $$$$\mathrm{11}−−−−−−−−−\mathrm{119}−−−−\mathrm{128}−−−−\mathrm{137} \\ $$$$\mathrm{12}−−−−−−−−−−−−−−−\mathrm{129}−−−−\mathrm{138} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{on}}.. \\ $$$$\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{is}}\:\mathrm{129}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{number}}\: \\ $$$$\boldsymbol{\mathrm{is}}\:\mathrm{129}+\mathrm{9}×\boldsymbol{\mathrm{n}}<\mathrm{200} \\ $$$$\boldsymbol{\mathrm{n}}=\mathrm{7} \\ $$$$\therefore\:\mathrm{no}.\:\mathrm{of}\:\mathrm{3}\:\mathrm{digits}\:\mathrm{number}\:\mathrm{whose}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{12}\:\mathrm{is} \\ $$$$=\:\mathrm{7}+\mathrm{1}=\mathrm{8} \\ $$$$\mathrm{sir}\:\mathrm{is}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{helpful}\:\mathrm{for}\:\mathrm{such}\:\mathrm{problems}\:? \\ $$$$\mathrm{Sir}\:\mathrm{Rasheed}\:\mathrm{and}\:\mathrm{Mr}.\mathrm{Wsir}\:\mathrm{please}\:\mathrm{share}\:\mathrm{your} \\ $$$$\mathrm{comments}. \\ $$

Commented by mr W last updated on 11/Jul/20

yes! this is the best method to solve.  please recheck your formula, i think  it contains an error. i got:  C_5 ^(17) −C_5 ^8 −5C_5 ^7 =6027

$${yes}!\:{this}\:{is}\:{the}\:{best}\:{method}\:{to}\:{solve}. \\ $$$${please}\:{recheck}\:{your}\:{formula},\:{i}\:{think} \\ $$$${it}\:{contains}\:{an}\:{error}.\:{i}\:{got}: \\ $$$${C}_{\mathrm{5}} ^{\mathrm{17}} −{C}_{\mathrm{5}} ^{\mathrm{8}} −\mathrm{5}{C}_{\mathrm{5}} ^{\mathrm{7}} =\mathrm{6027} \\ $$

Commented by mr W last updated on 11/Jul/20

big thanks to all for the many ideas!

$${big}\:{thanks}\:{to}\:{all}\:{for}\:{the}\:{many}\:{ideas}! \\ $$

Commented by prakash jain last updated on 11/Jul/20

See Q22040

$$\mathrm{See}\:\mathrm{Q22040} \\ $$

Commented by prakash jain last updated on 11/Jul/20

Q55502

$$\mathrm{Q55502} \\ $$

Commented by prakash jain last updated on 11/Jul/20

Several other questions answered  by mr W only using method.  mr W, is the same method not  applicable here.  I did remember some previous   questions so searched.

$$\mathrm{Several}\:\mathrm{other}\:\mathrm{questions}\:\mathrm{answered} \\ $$$$\mathrm{by}\:\mathrm{mr}\:\mathrm{W}\:\mathrm{only}\:\mathrm{using}\:\mathrm{method}. \\ $$$$\mathrm{mr}\:\mathrm{W},\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{method}\:\mathrm{not} \\ $$$$\mathrm{applicable}\:\mathrm{here}. \\ $$$$\mathrm{I}\:\mathrm{did}\:\mathrm{remember}\:\mathrm{some}\:\mathrm{previous}\: \\ $$$$\mathrm{questions}\:\mathrm{so}\:\mathrm{searched}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

Thank you sirs

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sirs} \\ $$

Commented by mr W last updated on 11/Jul/20

there is no standard way for such  problems. the way you are trying can  reach the goal, but it could be tough.

$${there}\:{is}\:{no}\:{standard}\:{way}\:{for}\:{such} \\ $$$${problems}.\:{the}\:{way}\:{you}\:{are}\:{trying}\:{can} \\ $$$${reach}\:{the}\:{goal},\:{but}\:{it}\:{could}\:{be}\:{tough}. \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Sir an idea comes to me! If sum  of digits is 13 that means  numbers which leaves  remainder 1 when they′re  divided by 3. That is 3k+1 type  numbers.   The numbers leaves remainder  4 when they′re divided by 9.  That is the numbers of 9k+4  types....Some extra numbers  ....

$${Sir}\:{an}\:{idea}\:{comes}\:{to}\:{me}!\:{If}\:{sum} \\ $$$${of}\:{digits}\:{is}\:\mathrm{13}\:{that}\:{means} \\ $$$${numbers}\:{which}\:{leaves} \\ $$$${remainder}\:\mathrm{1}\:{when}\:{they}'{re} \\ $$$${divided}\:{by}\:\mathrm{3}.\:{That}\:{is}\:\mathrm{3}{k}+\mathrm{1}\:{type} \\ $$$${numbers}. \\ $$$$\:\mathcal{T}{he}\:{numbers}\:{leaves}\:{remainder} \\ $$$$\mathrm{4}\:{when}\:{they}'{re}\:{divided}\:{by}\:\mathrm{9}. \\ $$$$\mathcal{T}{hat}\:{is}\:{the}\:{numbers}\:{of}\:\mathrm{9}{k}+\mathrm{4} \\ $$$${types}....{Some}\:{extra}\:{numbers} \\ $$$$.... \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

sir but the number  300001 =3×100000+1  but 3+0+0+0+0+1≠13  and  3×94528+1=283585≠13

$$\mathrm{sir}\:\mathrm{but}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{300001}\:=\mathrm{3}×\mathrm{100000}+\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{3}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{1}\neq\mathrm{13} \\ $$$$\mathrm{and} \\ $$$$\mathrm{3}×\mathrm{94528}+\mathrm{1}=\mathrm{283585}\neq\mathrm{13} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Hello sir PRITHWISH SEN!  You′re right sir! Some extra  numbers will also included.So...

$${Hello}\:{sir}\:{PRITHWISH}\:{SEN}! \\ $$$${You}'{re}\:{right}\:{sir}!\:{Some}\:{extra} \\ $$$${numbers}\:{will}\:{also}\:{included}.{So}... \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

Please check this   1^(st)  Digit             No. of numbers      9                 The coefficient of 4 in                          (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      8                The coeffi. of 5 in                          (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      7                   The coeffi. of  6 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      6                  The coeffi. of  7 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      5                  The coeffi. of  8 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      4                   The coeffi. of  9 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      3                  The coeffi. of  10 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      2                  The coeffi. of  11 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5      1                  The coeffi. of  12 in                           (a^0 +a^1 +a^2 +a^3 +a^4 +a^5 +a^6 +a^7 +a^8 +a^9 )^5

$$\mathrm{Please}\:\mathrm{check}\:\mathrm{this} \\ $$$$\:\mathrm{1}^{\boldsymbol{\mathrm{st}}} \:\boldsymbol{\mathrm{Digit}}\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{No}}.\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{numbers}} \\ $$$$\:\:\:\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coefficient}}\:\boldsymbol{\mathrm{of}}\:\mathrm{4}\:\boldsymbol{\mathrm{in}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{8}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\mathrm{5}\:\boldsymbol{\mathrm{in}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{6}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{7}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{8}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{9}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{10}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{11}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{coeffi}}.\:\boldsymbol{\mathrm{of}}\:\:\mathrm{12}\:\boldsymbol{\mathrm{in}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\boldsymbol{\mathrm{a}}^{\mathrm{0}} +\boldsymbol{\mathrm{a}}^{\mathrm{1}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{5}} +\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{a}}^{\mathrm{7}} +\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by prakash jain last updated on 11/Jul/20

First digits 1 to 9  rest all 0 to 9  (x^1 +....+x^9 )(1+...+x^9 )^5   Digits with sum 13 is given by  coefficient of x^(13)  in above expression.  ((x(1−x^9 ))/(1−x))×(((1−x^(10) )^5 )/((1−x)^5 ))  =x(1−x^9 −x^(10) +higherpower)(1−x)^(−6)   =x(1−x^9 −5x^(10) )(1+Σ_(i=1) ^∞ ^(6+i−1) C_i x^i )  =(x−x^(10) −x^(11) )(...)  Terms in ()that will given x^(13 )    x^(12) ,x^3 ,x^2    ^(17) C_5 −^8 C_3 −5^7 C_2   (correction (1−x^(10) )^5  was  earlier written (1−x^(10) +..)  it should be (1−5x^(10) +..)

$$\mathrm{First}\:\mathrm{digits}\:\mathrm{1}\:\mathrm{to}\:\mathrm{9} \\ $$$$\mathrm{rest}\:\mathrm{all}\:\mathrm{0}\:\mathrm{to}\:\mathrm{9} \\ $$$$\left({x}^{\mathrm{1}} +....+{x}^{\mathrm{9}} \right)\left(\mathrm{1}+...+{x}^{\mathrm{9}} \right)^{\mathrm{5}} \\ $$$$\mathrm{Digits}\:\mathrm{with}\:\mathrm{sum}\:\mathrm{13}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\mathrm{coefficient}\:\mathrm{of}\:{x}^{\mathrm{13}} \:\mathrm{in}\:\mathrm{above}\:\mathrm{expression}. \\ $$$$\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)}{\mathrm{1}−{x}}×\frac{\left(\mathrm{1}−{x}^{\mathrm{10}} \right)^{\mathrm{5}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{5}} } \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} −{x}^{\mathrm{10}} +\mathrm{higherpower}\right)\left(\mathrm{1}−{x}\right)^{−\mathrm{6}} \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} −\mathrm{5}{x}^{\mathrm{10}} \right)\left(\mathrm{1}+\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\:^{\mathrm{6}+{i}−\mathrm{1}} {C}_{{i}} {x}^{{i}} \right) \\ $$$$=\left({x}−{x}^{\mathrm{10}} −{x}^{\mathrm{11}} \right)\left(...\right) \\ $$$$\mathrm{Terms}\:\mathrm{in}\:\left(\right)\mathrm{that}\:\mathrm{will}\:\mathrm{given}\:{x}^{\mathrm{13}\:} \: \\ $$$${x}^{\mathrm{12}} ,{x}^{\mathrm{3}} ,{x}^{\mathrm{2}} \\ $$$$\:\:^{\mathrm{17}} {C}_{\mathrm{5}} −^{\mathrm{8}} {C}_{\mathrm{3}} −\mathrm{5}\:^{\mathrm{7}} {C}_{\mathrm{2}} \\ $$$$\left(\mathrm{correction}\:\left(\mathrm{1}−{x}^{\mathrm{10}} \right)^{\mathrm{5}} \:\mathrm{was}\right. \\ $$$$\mathrm{earlier}\:\mathrm{written}\:\left(\mathrm{1}−{x}^{\mathrm{10}} +..\right) \\ $$$$\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\left(\mathrm{1}−\mathrm{5}{x}^{\mathrm{10}} +..\right) \\ $$

Commented by mr W last updated on 11/Jul/20

yes sir! i solved similar questions  sometimes ago, but i can′t remember  the old posts. how did you find these  old posts?

$${yes}\:{sir}!\:{i}\:{solved}\:{similar}\:{questions} \\ $$$${sometimes}\:{ago},\:{but}\:{i}\:{can}'{t}\:{remember} \\ $$$${the}\:{old}\:{posts}.\:{how}\:{did}\:{you}\:{find}\:{these} \\ $$$${old}\:{posts}? \\ $$

Commented by prakash jain last updated on 11/Jul/20

I searched for generating or just  generat etc. tried 2−3 search text.

$$\mathrm{I}\:\mathrm{searched}\:\mathrm{for}\:\mathrm{generating}\:\mathrm{or}\:\mathrm{just} \\ $$$$\mathrm{generat}\:\mathrm{etc}.\:\mathrm{tried}\:\mathrm{2}−\mathrm{3}\:\mathrm{search}\:\mathrm{text}. \\ $$

Commented by mr W last updated on 11/Jul/20

thanks sir! in this way one can find  some old posts, great!

$${thanks}\:{sir}!\:{in}\:{this}\:{way}\:{one}\:{can}\:{find} \\ $$$${some}\:{old}\:{posts},\:{great}! \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

sir prakash jain  i think your 2^(nd) expression will be  (1+....+x^9 )^5  not 6

$$\mathrm{sir}\:\mathrm{prakash}\:\mathrm{jain} \\ $$$$\mathrm{i}\:\mathrm{think}\:\mathrm{your}\:\mathrm{2}^{\mathrm{nd}} \mathrm{expression}\:\mathrm{will}\:\mathrm{be} \\ $$$$\left(\mathrm{1}+....+\mathrm{x}^{\mathrm{9}} \right)^{\mathrm{5}} \:\mathrm{not}\:\mathrm{6} \\ $$

Commented by prakash jain last updated on 11/Jul/20

yes. it is 5.

$${yes}.\:{it}\:{is}\:\mathrm{5}. \\ $$

Commented by prakash jain last updated on 11/Jul/20

ok. I realize now. in previous step  i have written six.

$${ok}.\:{I}\:{realize}\:{now}.\:{in}\:{previous}\:{step} \\ $$$${i}\:{have}\:{written}\:{six}. \\ $$

Answered by mr W last updated on 11/Jul/20

let′s look at the general case:  how many n digit numbers exist  whose digits have exactly the sum m?  say such a number is  d_1 d_2 d_3 ...d_n   with the conditions:  1≤d_1 ≤9  0≤d_2 ,d_3 ,...,d_n ≤9  so the question is how many integral  solutions the following equation  d_1 +d_2 +d_3 +...+d_n =m   ...(I)  has under the given conditions.  we can use the generating functions  for d_1 : x+x^2 +x^3 +...+x^9   for d_2 ,d_3 ,...,d_n : 1+x+x^2 +x^3 +...+x^9   for d_1 +d_2 +d_3 +...+d_n  it is then  (x+x^2 +x^3 +...+x^9 )(1+x+x^2 +x^3 +...+x^9 )^(n−1)   =((x(1−x^9 )(1−x^(10) )^(n−1) )/((1−x)^n ))  =x(1−x^9 )(1−x^(10) )^(n−1) Σ_(k=0) ^∞ C_(n−1) ^(k+n−1) x^k   =x(1−x^9 )[Σ_(r=0) ^(n−1) (−1)^r C_r ^(n−1) x^(10r) ][Σ_(k=0) ^∞ C_(n−1) ^(k+n−1) x^k ]  the coefficient of the x^m  term in this  generating function represents the  number of solutions of eqn. (I).    example: n=6, m=13  GF=x(1−x^9 )(1−5x^(10) +...)Σ_(k=0) ^∞ C_5 ^(k+5) x^k   =x(1−x^9 −5x^(10) +...)Σ_(k=0) ^∞ C_5 ^(k+5) x^k   coefficient of x^(13)  term is  (for k=12, 3, 2)  C_5 ^(17) −C_5 ^8 −5C_5 ^7 =6027

$${let}'{s}\:{look}\:{at}\:{the}\:{general}\:{case}: \\ $$$${how}\:{many}\:{n}\:{digit}\:{numbers}\:{exist} \\ $$$${whose}\:{digits}\:{have}\:{exactly}\:{the}\:{sum}\:{m}? \\ $$$${say}\:{such}\:{a}\:{number}\:{is} \\ $$$${d}_{\mathrm{1}} {d}_{\mathrm{2}} {d}_{\mathrm{3}} ...{d}_{{n}} \\ $$$${with}\:{the}\:{conditions}: \\ $$$$\mathrm{1}\leqslant{d}_{\mathrm{1}} \leqslant\mathrm{9} \\ $$$$\mathrm{0}\leqslant{d}_{\mathrm{2}} ,{d}_{\mathrm{3}} ,...,{d}_{{n}} \leqslant\mathrm{9} \\ $$$${so}\:{the}\:{question}\:{is}\:{how}\:{many}\:{integral} \\ $$$${solutions}\:{the}\:{following}\:{equation} \\ $$$${d}_{\mathrm{1}} +{d}_{\mathrm{2}} +{d}_{\mathrm{3}} +...+{d}_{{n}} ={m}\:\:\:...\left({I}\right) \\ $$$${has}\:{under}\:{the}\:{given}\:{conditions}. \\ $$$${we}\:{can}\:{use}\:{the}\:{generating}\:{functions} \\ $$$${for}\:{d}_{\mathrm{1}} :\:{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{\mathrm{9}} \\ $$$${for}\:{d}_{\mathrm{2}} ,{d}_{\mathrm{3}} ,...,{d}_{{n}} :\:\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{\mathrm{9}} \\ $$$${for}\:{d}_{\mathrm{1}} +{d}_{\mathrm{2}} +{d}_{\mathrm{3}} +...+{d}_{{n}} \:{it}\:{is}\:{then} \\ $$$$\left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{\mathrm{9}} \right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{\mathrm{9}} \right)^{{n}−\mathrm{1}} \\ $$$$=\frac{{x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left(\mathrm{1}−{x}^{\mathrm{10}} \right)^{{n}−\mathrm{1}} }{\left(\mathrm{1}−{x}\right)^{{n}} } \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left(\mathrm{1}−{x}^{\mathrm{10}} \right)^{{n}−\mathrm{1}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{{n}−\mathrm{1}} ^{{k}+{n}−\mathrm{1}} {x}^{{k}} \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left[\underset{{r}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{r}} {C}_{{r}} ^{{n}−\mathrm{1}} {x}^{\mathrm{10}{r}} \right]\left[\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{{n}−\mathrm{1}} ^{{k}+{n}−\mathrm{1}} {x}^{{k}} \right] \\ $$$${the}\:{coefficient}\:{of}\:{the}\:{x}^{{m}} \:{term}\:{in}\:{this} \\ $$$${generating}\:{function}\:{represents}\:{the} \\ $$$${number}\:{of}\:{solutions}\:{of}\:{eqn}.\:\left({I}\right). \\ $$$$ \\ $$$${example}:\:{n}=\mathrm{6},\:{m}=\mathrm{13} \\ $$$${GF}={x}\left(\mathrm{1}−{x}^{\mathrm{9}} \right)\left(\mathrm{1}−\mathrm{5}{x}^{\mathrm{10}} +...\right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{5}} ^{{k}+\mathrm{5}} {x}^{{k}} \\ $$$$={x}\left(\mathrm{1}−{x}^{\mathrm{9}} −\mathrm{5}{x}^{\mathrm{10}} +...\right)\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{5}} ^{{k}+\mathrm{5}} {x}^{{k}} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{13}} \:{term}\:{is} \\ $$$$\left({for}\:{k}=\mathrm{12},\:\mathrm{3},\:\mathrm{2}\right) \\ $$$${C}_{\mathrm{5}} ^{\mathrm{17}} −{C}_{\mathrm{5}} ^{\mathrm{8}} −\mathrm{5}{C}_{\mathrm{5}} ^{\mathrm{7}} =\mathrm{6027} \\ $$

Commented by PRITHWISH SEN 2 last updated on 11/Jul/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Answered by prakash jain last updated on 11/Jul/20

xxxxxxxxxxxxxxxxxx (18x)  Replace any 5 of last 17 x by a bar  count the number of xs between  to bars to get a digit.  Now this will include cases where  where all 5 bars are included in  8 or less continous xs. Meaning digits  has to be ≤9.  # of ways to place 5 bars=^(17) C_5   one digits is 10=6×^5 C_3 +^7 C_4 +^6 C_4 =110  one digits is 11=5×^4 C_3 +^6 C_4 +^5 C_4 =55  one digits is 12=4×^3 C_3 +^5 C_4 +^4 C_4 =10  one digits is 13=1  valid outcomes  =^(17) C_5 −161=6188−161=6027  count the number of x between  2 bars to get the digit.  x∣10x∣5x to x6x∣10x  xx∣xxx∣xxx∣∣xxx∣xx  233032  xx∣∣∣∣∣∣xxxxxxxxxxx

$${xxxxxxxxxxxxxxxxxx}\:\left(\mathrm{18}{x}\right) \\ $$$$\mathrm{Replace}\:\mathrm{any}\:\mathrm{5}\:\mathrm{of}\:\mathrm{last}\:\mathrm{17}\:{x}\:\mathrm{by}\:\mathrm{a}\:\mathrm{bar} \\ $$$$\mathrm{count}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:{xs}\:\mathrm{between} \\ $$$$\mathrm{to}\:\mathrm{bars}\:\mathrm{to}\:\mathrm{get}\:\mathrm{a}\:\mathrm{digit}. \\ $$$$\mathrm{Now}\:\mathrm{this}\:\mathrm{will}\:\mathrm{include}\:\mathrm{cases}\:\mathrm{where} \\ $$$$\mathrm{where}\:\mathrm{all}\:\mathrm{5}\:\mathrm{bars}\:\mathrm{are}\:\mathrm{included}\:\mathrm{in} \\ $$$$\mathrm{8}\:\mathrm{or}\:\mathrm{less}\:\mathrm{continous}\:{xs}.\:\mathrm{Meaning}\:\mathrm{digits} \\ $$$$\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\leqslant\mathrm{9}. \\ $$$$#\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{place}\:\mathrm{5}\:\mathrm{bars}=\:^{\mathrm{17}} {C}_{\mathrm{5}} \\ $$$$\mathrm{one}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{10}=\mathrm{6}×\:^{\mathrm{5}} {C}_{\mathrm{3}} +\:^{\mathrm{7}} {C}_{\mathrm{4}} +\:^{\mathrm{6}} {C}_{\mathrm{4}} =\mathrm{110} \\ $$$$\mathrm{one}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{11}=\mathrm{5}×\:^{\mathrm{4}} {C}_{\mathrm{3}} +\:^{\mathrm{6}} {C}_{\mathrm{4}} +\:^{\mathrm{5}} {C}_{\mathrm{4}} =\mathrm{55} \\ $$$$\mathrm{one}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{12}=\mathrm{4}×\:^{\mathrm{3}} {C}_{\mathrm{3}} +\:^{\mathrm{5}} {C}_{\mathrm{4}} +^{\mathrm{4}} {C}_{\mathrm{4}} =\mathrm{10} \\ $$$$\mathrm{one}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{13}=\mathrm{1} \\ $$$$\mathrm{valid}\:\mathrm{outcomes} \\ $$$$=^{\mathrm{17}} \mathrm{C}_{\mathrm{5}} −\mathrm{161}=\mathrm{6188}−\mathrm{161}=\mathrm{6027} \\ $$$$\mathrm{count}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:{x}\:\mathrm{between} \\ $$$$\mathrm{2}\:\mathrm{bars}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the}\:\mathrm{digit}. \\ $$$${x}\mid\mathrm{10}{x}\mid\mathrm{5}{x}\:\mathrm{to}\:{x}\mathrm{6}{x}\mid\mathrm{10}{x} \\ $$$${xx}\mid{xxx}\mid{xxx}\mid\mid{xxx}\mid{xx} \\ $$$$\mathrm{233032} \\ $$$${xx}\mid\mid\mid\mid\mid\mid{xxxxxxxxxxx} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jul/20

Sir really useful method! I  remember now that long ago I  had learnt it from you but I  forgot!

$${Sir}\:{really}\:{useful}\:{method}!\:{I} \\ $$$${remember}\:{now}\:{that}\:{long}\:{ago}\:{I} \\ $$$${had}\:{learnt}\:{it}\:{from}\:{you}\:{but}\:{I} \\ $$$${forgot}! \\ $$

Commented by prakash jain last updated on 11/Jul/20

This method is commonly known  as stars and bars.  Very useful for dividing n items  in m boxes.  The above is a special cases where  first box is not empty and other  boxes can be empty but cannot  contain more than 9 items.

$$\mathrm{This}\:\mathrm{method}\:\mathrm{is}\:\mathrm{commonly}\:\mathrm{known} \\ $$$$\mathrm{as}\:\mathrm{stars}\:\mathrm{and}\:\mathrm{bars}. \\ $$$$\mathrm{Very}\:\mathrm{useful}\:\mathrm{for}\:\mathrm{dividing}\:{n}\:\mathrm{items} \\ $$$$\mathrm{in}\:{m}\:\mathrm{boxes}. \\ $$$$\mathrm{The}\:\mathrm{above}\:\mathrm{is}\:\mathrm{a}\:\mathrm{special}\:\mathrm{cases}\:\mathrm{where} \\ $$$$\mathrm{first}\:\mathrm{box}\:\mathrm{is}\:\mathrm{not}\:\mathrm{empty}\:\mathrm{and}\:\mathrm{other} \\ $$$$\mathrm{boxes}\:\mathrm{can}\:\mathrm{be}\:\mathrm{empty}\:\mathrm{but}\:\mathrm{cannot} \\ $$$$\mathrm{contain}\:\mathrm{more}\:\mathrm{than}\:\mathrm{9}\:\mathrm{items}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com