Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 102926 by mohammad17 last updated on 11/Jul/20

 ∫ (dθ/(2sin^2 θ−cos^2 θ))  ?

dθ2sin2θcos2θ?

Answered by OlafThorendsen last updated on 11/Jul/20

∫(dθ/(2((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 ))))  (t = tan(θ/2))  ∫((1+t^2 )/(t^2 +4t−1))dθ  ∫((1+t^2 )/((t+2)^2 −5))dθ  ∫((1+t^2 )/(2(√5)))[(1/(t+2−(√5)))−(1/(t+2+(√5)))]dθ  (1/(√5))ln((t+2−(√5))/(t+2+(√5)))+C  (1/(√5))ln((tan(θ/2)+2−(√5))/(tan(θ/2)+2+(√5)))+C

dθ22t1+t21t21+t2(t=tanθ2)1+t2t2+4t1dθ1+t2(t+2)25dθ1+t225[1t+251t+2+5]dθ15lnt+25t+2+5+C15lntanθ2+25tanθ2+2+5+C

Commented by mohammad17 last updated on 11/Jul/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 11/Jul/20

∫((sec^2 θdθ)/(2tan^2 θ−1))=∫(dt/(2t^2 −1))=(1/2)∫(dt/(t^2 −(1/2)))=(1/(2(√2)))log((((√2)t−1)/((√2)t+1)))+C  (take  tanθ=x  (1/(2(√2)))log((((√2)tanθ−1)/((√2)tanθ+1)))+C

sec2θdθ2tan2θ1=dt2t21=12dtt212=122log(2t12t+1)+C(taketanθ=x122log(2tanθ12tanθ+1)+C

Commented by mohammad17 last updated on 11/Jul/20

very nice thank you sir

verynicethankyousir

Answered by mathmax by abdo last updated on 11/Jul/20

I =∫  (dx/(2sin^2 x−cos^2 x)) ⇒ I =∫  (dx/(2sin^2 x−(1−sin^2 x)))  =∫  (dx/(2sin^2 x−1+sin^2 x)) =∫  (dx/(3sin^2 x−1)) =∫  (dx/(((√3)sinx−1)((√3)sinx+1)))  =(1/2)∫ ((1/((√3)sinx−1))−(1/((√3)sinx +1)))dx =H−K  H =(1/2) ∫ (dx/((√3)sinx −1)) ⇒2H =_(tan((x/2))=t)     ∫   ((2dt)/((1+t^2 )((√3)×((2t)/(1+t^2 )) −1)))  =∫  ((2dt)/(2(√3)t−1−t^2 )) =−2 ∫  (dt/(t^2 −2(√3)t +1))  t^2 −2(√3)t +1 =0 →Δ^′  =3−1=2 ⇒t_1 =(√3)+(√2)  and t_2 =(√3)−(√2)  2H =−2 ∫  (dt/((t−t_1 )(t−t_2 ))) =((−1)/(√2)) ∫((1/(t−t_1 ))−(1/(t−t_2 )))dt  H=−(1/(2(√2)))ln∣((t−t_1 )/(t−t_2 ))∣ +C =−(1/(2(√2)))ln∣((tan((x/2))−(√3)−(√2))/(tan((x/2))−(√3)+(√2)))∣ +C  K =(1/2)∫ (dx/((√3)sinx +1)) ⇒2K =_(tan((x/2))=t)    ∫ ((2dt)/((1+t^2 )((√3)×((2t)/(1+t^2 )) +1)))  ⇒K =∫  (dt/(2(√3)t +1+t^2 )) =∫  (dt/(t^2 +2(√3)t +1))  Δ^′  =2 ⇒ t_1 =−(√3)+(√2) and t_2 =−(√3)−(√2) ⇒  K =∫ (dt/((t−t_1 )(t−t_2 ))) =(1/(2(√2)))∫((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(2(√2)))ln∣((t−t_1 )/(t−t_2 ))∣ +C =(1/(2(√2)))ln∣((tan((x/2))+(√3)−(√2))/(tan((x/2))+(√3)+(√2)))∣ +C  I =H−K

I=dx2sin2xcos2xI=dx2sin2x(1sin2x)=dx2sin2x1+sin2x=dx3sin2x1=dx(3sinx1)(3sinx+1)=12(13sinx113sinx+1)dx=HKH=12dx3sinx12H=tan(x2)=t2dt(1+t2)(3×2t1+t21)=2dt23t1t2=2dtt223t+1t223t+1=0Δ=31=2t1=3+2andt2=322H=2dt(tt1)(tt2)=12(1tt11tt2)dtH=122lntt1tt2+C=122lntan(x2)32tan(x2)3+2+CK=12dx3sinx+12K=tan(x2)=t2dt(1+t2)(3×2t1+t2+1)K=dt23t+1+t2=dtt2+23t+1Δ=2t1=3+2andt2=32K=dt(tt1)(tt2)=122(1tt11tt2)dt=122lntt1tt2+C=122lntan(x2)+32tan(x2)+3+2+CI=HK

Terms of Service

Privacy Policy

Contact: info@tinkutara.com