All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 102985 by DGmichael last updated on 12/Jul/20
Answered by mathmax by abdo last updated on 12/Jul/20
atformofserieletf(x)=∫0xet(1+t2)2dtifo⩽x<1wehave11+u=∑n=0∞(−1)nun⇒byderivationweget−1(1+u)2=∑n=1∞n(−1)nun−1⇒1(1+u)2=∑n=1∞n(−1)n−1un−1⇒1(1+t2)2=∑n=1∞n(−1)n−1t2n−2⇒f(x)=∫0xet(∑n=1∞n(−1)n−1t2n−2)dt=∑n=1∞n(−1)n−1∫0xt2n−2etdt=∑n=1∞n(−1)n−1UnUn=∫0xt2n−2etdtbypartsu′=t2n−2andv=et⇒Un=[12n−1t2n−1et]0x−∫0x12n−1t2n−1etdt=x2n−1ex2n−1−12n−1∫0xt2n−1etdtand∫0xt2n−1etdt=[t2n2net]0x−∫0xt2n2netdt=x2nex2n−12n∫0xt2netdt=x2nex2n−12nUn+1⇒Un=x2n−1ex2n−1−12n−1{x2nex2n−12nUn+1}=x2n−1ex2n−1−x2nex(2n−1)(2n)+12n(2n−1)Un+1...becontinued
Answered by maths mind last updated on 12/Jul/20
∫ext+x2dx=f(t)=12it∫{−exx+it+exx−it}dxu=x+it⇒du=dx=−12it∫eu−itudu+12it∫eu+itudu=2Re∫eu+itudu=2Re∫euu{cos(t)+isin(t))du=2∫euucos(t)du=2cos(t)Ei(u)=2cos(t)Ei(x+it)+c=f(t)wewant−f′(1)f′(t)=−2sin(t)Ei(x+it)+itcos(t).ex+itx+it−f′(1)=2sin(1)Ei(x+i)−cos(1)ex(cos(1)+isin(1))x+i+c=∫ex(1+x2)2dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com