Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 103014 by bobhans last updated on 12/Jul/20

y′′ −y = (e^x /(e^x  + e^(−x) )) .

yy=exex+ex.

Answered by bobhans last updated on 12/Jul/20

the characteristic equation of the  homogenous equation is γ^2 −1=0 ; γ=±1  y_h  = C_1 e^x  + C_2 e^(−x)    say y_1 (x)=e^x  →y_1 ′ = e^x   y_2 (x)= e^(−x)  →y_2 ′ = −e^(−x)   Wronskian W(y_1 ,y_2 ) =  determinant (((y_1    y_2 )),((y_1 ′  y_2 ′)))=   determinant (((e^x      e^(−x) )),((e^x   −e^(−x) )))=−2≠0  I_1 = ∫ ((e^x ((e^x /(e^x +e^(−x) ))))/(W(y_1 ,y_2 ))) dx = −(1/2)∫ (e^(2x) /(e^x +e^(−x) )) dx   = −(1/2)e^x  +(1/2)tan^(−1) (e^x )  I_2 = ∫ ((e^(−x) ((e^x /(e^x +e^(−x) ))))/(−2)) dx = −(1/2)∫ (dx/(e^x +e^(−x) ))  = −(1/2)tan^(−1) (e^x )   y_p  = −e^x I_2 + e^(−x) I_1  = (1/2)e^x  tan^(−1) (e^x )−  (1/2)+(1/2)e^(−x)  tan^(−1) (e^x )   complete solution   y = C_1 e^x +C_2 e^(−x) +(1/2)(e^x  + e^(−x) )tan^(−1) (e^x )−(1/2)

thecharacteristicequationofthehomogenousequationisγ21=0;γ=±1yh=C1ex+C2exsayy1(x)=exy1=exy2(x)=exy2=exWronskianW(y1,y2)=|y1y2y1y2|=|exexexex|=20I1=ex(exex+ex)W(y1,y2)dx=12e2xex+exdx=12ex+12tan1(ex)I2=ex(exex+ex)2dx=12dxex+ex=12tan1(ex)yp=exI2+exI1=12extan1(ex)12+12extan1(ex)completesolutiony=C1ex+C2ex+12(ex+ex)tan1(ex)12

Commented by bramlex last updated on 12/Jul/20

coll joss

colljoss

Answered by mathmax by abdo last updated on 12/Jul/20

y^(′′) −y =(e^x /(e^x  +e^(−x) ))  (he)→y^(′′) −y =0 →r^2 −1=0→r =+^− 1 ⇒y_h =a e^x  +be^(−x)  =au_1  +bu_2   W(u_1 ,u_2 ) = determinant (((e^x           e^(−x) )),((e^x          −e^(−x) ))) =−2 ≠0  W_1 = determinant (((o                              e^(−x) )),(((e^x /(e^x  +e^(−x) ))              −e^(−x) )))=−(1/(e^x  +e^(−x) ))  W_2 = determinant (((e^x              0)),((e^x             (e^x /(e^x  +e^(−x) ))))) =(e^(2x) /(e^x  +e^(−x) ))  v_1 =∫ (W_1 /W)dx =∫  (dx/(2(e^x  +e^(−x) )))  =_(e^x =t)    (1/2) ∫    (dt/(t(t +t^(−1) ))) =(1/2) ∫ (dt/(t^2  +1))  =(1/2)arctan(t) =(1/2)arctan(e^x )  v_2 =∫ (W_2 /W)dx  =−∫  (e^(2x) /(2( e^x  +e^(−x) )))dx =_(e^x =t)   −(1/2) ∫  (t^2 /(t(t+t^(−1) ))) dt  =−(1/2) ∫  (t/(t+t^(−1) ))dt =−(1/2)∫ (t^2 /(t^2  +1))dx =−(1/2)∫ ((t^2 +1−1)/(t^2  +1))dt  =−(1/2)t +(1/2)arctan(t) =−(e^x /2) +(1/2) arctan(e^x ) ⇒  y_p =u_1 v_1  +u_2 v_2 =e^x ((1/2) arctan(e^x ))+e^(−x) (−(e^x /2) +(1/2) arctan(e^x ))  =(e^x /2) arctan(e^x )−(1/2) +(e^(−x) /2)arctan(e^x )  =ch(x)arctan(e^x )−(1/2)  the general solution  is  y =y_h  +y_p =ae^x  +be^(−x)  +ch(x)arctan(e^x )−(1/2)

yy=exex+ex(he)yy=0r21=0r=+1yh=aex+bex=au1+bu2W(u1,u2)=|exexexex|=20W1=|oexexex+exex|=1ex+exW2=|ex0exexex+ex|=e2xex+exv1=W1Wdx=dx2(ex+ex)=ex=t12dtt(t+t1)=12dtt2+1=12arctan(t)=12arctan(ex)v2=W2Wdx=e2x2(ex+ex)dx=ex=t12t2t(t+t1)dt=12tt+t1dt=12t2t2+1dx=12t2+11t2+1dt=12t+12arctan(t)=ex2+12arctan(ex)yp=u1v1+u2v2=ex(12arctan(ex))+ex(ex2+12arctan(ex))=ex2arctan(ex)12+ex2arctan(ex)=ch(x)arctan(ex)12thegeneralsolutionisy=yh+yp=aex+bex+ch(x)arctan(ex)12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com