Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103040 by bobhans last updated on 12/Jul/20

given 5x+12y = 60  min value of (√(x^2 +y^2 ))

$${given}\:\mathrm{5}{x}+\mathrm{12}{y}\:=\:\mathrm{60} \\ $$$${min}\:{value}\:{of}\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Answered by bobhans last updated on 12/Jul/20

Commented by mathmax by abdo last updated on 12/Jul/20

error sir  (∂f/∂λ)=5x +2y−60 !

$$\mathrm{error}\:\mathrm{sir}\:\:\frac{\partial\mathrm{f}}{\partial\lambda}=\mathrm{5x}\:+\mathrm{2y}−\mathrm{60}\:! \\ $$

Commented by bemath last updated on 12/Jul/20

the equation 5x+12y−60=0 sir  it typo

$${the}\:{equation}\:\mathrm{5}{x}+\mathrm{12}{y}−\mathrm{60}=\mathrm{0}\:{sir} \\ $$$${it}\:{typo}\: \\ $$$$ \\ $$$$ \\ $$

Answered by ajfour last updated on 12/Jul/20

let x=rcos θ , y=rsin θ  ⇒   r=(√(x^2 +y^2 ))     13(((5x)/(13))+((12y)/(13)))=60  {if   sin α=(5/(13)) ,  cos α=((12)/(13))  ⇒     tan α=(5/(12)) }    13r(sin αcos θ+cos αsin θ)=60  ⇒  13rsin (α+θ)=60  ⇒    r=((60)/(13sin(α+θ)))  and  as  r>0    ⇒  r_(min) =((60)/(13))  when  θ=2nπ+(π/2)−tan^(−1) (5/(12))  .

$${let}\:{x}={r}\mathrm{cos}\:\theta\:,\:{y}={r}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:\:{r}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\:\:\:\mathrm{13}\left(\frac{\mathrm{5}{x}}{\mathrm{13}}+\frac{\mathrm{12}{y}}{\mathrm{13}}\right)=\mathrm{60} \\ $$$$\left\{{if}\:\:\:\mathrm{sin}\:\alpha=\frac{\mathrm{5}}{\mathrm{13}}\:,\:\:\mathrm{cos}\:\alpha=\frac{\mathrm{12}}{\mathrm{13}}\right. \\ $$$$\left.\Rightarrow\:\:\:\:\:\mathrm{tan}\:\alpha=\frac{\mathrm{5}}{\mathrm{12}}\:\right\} \\ $$$$\:\:\mathrm{13}{r}\left(\mathrm{sin}\:\alpha\mathrm{cos}\:\theta+\mathrm{cos}\:\alpha\mathrm{sin}\:\theta\right)=\mathrm{60} \\ $$$$\Rightarrow\:\:\mathrm{13}{r}\mathrm{sin}\:\left(\alpha+\theta\right)=\mathrm{60} \\ $$$$\Rightarrow\:\:\:\:{r}=\frac{\mathrm{60}}{\mathrm{13sin}\left(\alpha+\theta\right)} \\ $$$${and}\:\:{as}\:\:{r}>\mathrm{0}\:\:\:\:\Rightarrow\:\:{r}_{{min}} =\frac{\mathrm{60}}{\mathrm{13}} \\ $$$${when}\:\:\theta=\mathrm{2}{n}\pi+\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}\:\:. \\ $$

Answered by maths mind last updated on 12/Jul/20

M(x,y)∈(D): 5x+12y−60=0  (√(x^2 +y^2 ))=d(O,M)  min d(O,M)=d(O,M′)  M′ ptojection of O over (d)  d(0,M′)=((∣0.5+12.0−60∣)/(√(5^2 +12^2 )))=((60)/(13))

$${M}\left({x},{y}\right)\in\left({D}\right):\:\mathrm{5}{x}+\mathrm{12}{y}−\mathrm{60}=\mathrm{0} \\ $$$$\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }={d}\left({O},{M}\right) \\ $$$${min}\:{d}\left({O},{M}\right)={d}\left({O},{M}'\right) \\ $$$${M}'\:{ptojection}\:{of}\:{O}\:{over}\:\left({d}\right) \\ $$$${d}\left(\mathrm{0},{M}'\right)=\frac{\mid\mathrm{0}.\mathrm{5}+\mathrm{12}.\mathrm{0}−\mathrm{60}\mid}{\sqrt{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }}=\frac{\mathrm{60}}{\mathrm{13}} \\ $$

Answered by mr W last updated on 12/Jul/20

say (√(x^2 +y^2 ))=D  x^2 +y^2 =D^2   x^2 +(5−((5x)/(12)))^2 =D^2   ((169)/(144))x^2 −((50)/(12))x+25−D^2 =0  Δ=(((50)/(12)))^2 −4×((169)/(144))(25−D^2 )=0  D^2 =((3600)/(169))  ⇒D=((60)/(13))

$${say}\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }={D} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={D}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\left(\mathrm{5}−\frac{\mathrm{5}{x}}{\mathrm{12}}\right)^{\mathrm{2}} ={D}^{\mathrm{2}} \\ $$$$\frac{\mathrm{169}}{\mathrm{144}}{x}^{\mathrm{2}} −\frac{\mathrm{50}}{\mathrm{12}}{x}+\mathrm{25}−{D}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\left(\frac{\mathrm{50}}{\mathrm{12}}\right)^{\mathrm{2}} −\mathrm{4}×\frac{\mathrm{169}}{\mathrm{144}}\left(\mathrm{25}−{D}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${D}^{\mathrm{2}} =\frac{\mathrm{3600}}{\mathrm{169}} \\ $$$$\Rightarrow{D}=\frac{\mathrm{60}}{\mathrm{13}} \\ $$

Answered by 1549442205 last updated on 13/Jul/20

Apply Cauchy−Shward we have  60^2 =(5x+12y)^2 ≤(5^2 +12^2 )(x^2 +y^2 )  ⇒x^2 +y^2 ≥((60^2 )/(5^2 +12^2 ))=((60^2 )/(13^2 ))⇒(√(x^2 +y^2 ))≥((60)/(13))  the equality ocurrs if and only if   { (((x/5)=(y/(12)))),((5x+12y=60)) :}⇔ { ((x=((300)/(169)))),((y=((720)/(169)))) :}  Thus,(√(x^2 +y^2 )) has the smallest value  equal ((60)/(13)) when (x,y)=(((300)/(169));((720)/(169)))

$$\mathrm{Apply}\:\mathrm{Cauchy}−\mathrm{Shward}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{60}^{\mathrm{2}} =\left(\mathrm{5x}+\mathrm{12y}\right)^{\mathrm{2}} \leqslant\left(\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} \right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\frac{\mathrm{60}^{\mathrm{2}} }{\mathrm{5}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }=\frac{\mathrm{60}^{\mathrm{2}} }{\mathrm{13}^{\mathrm{2}} }\Rightarrow\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\geqslant\frac{\mathrm{60}}{\mathrm{13}} \\ $$$$\mathrm{the}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\begin{cases}{\frac{\mathrm{x}}{\mathrm{5}}=\frac{\mathrm{y}}{\mathrm{12}}}\\{\mathrm{5x}+\mathrm{12y}=\mathrm{60}}\end{cases}\Leftrightarrow\begin{cases}{\mathrm{x}=\frac{\mathrm{300}}{\mathrm{169}}}\\{\mathrm{y}=\frac{\mathrm{720}}{\mathrm{169}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{Thus}},\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{smallest}}\:\boldsymbol{\mathrm{value}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\frac{\mathrm{60}}{\mathrm{13}}\:\boldsymbol{\mathrm{when}}\:\left(\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\right)=\left(\frac{\mathrm{300}}{\mathrm{169}};\frac{\mathrm{720}}{\mathrm{169}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com