Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 103062 by ajfour last updated on 12/Jul/20

Commented by ajfour last updated on 12/Jul/20

If both coloured regions have  equal areas, find radius of the  semicircle.

$${If}\:{both}\:{coloured}\:{regions}\:{have} \\ $$$${equal}\:{areas},\:{find}\:{radius}\:{of}\:{the} \\ $$$${semicircle}. \\ $$

Answered by mr W last updated on 12/Jul/20

area of segment:  (R^2 /2)(2θ−sin 2θ)=((πR^2 )/4)  2θ−sin 2θ=(π/2)  ⇒θ=1.1549 (=66.17°)    tan θ=y′=2R sin θ  ⇒R=(1/(2 cos θ))≈1.2376

$${area}\:{of}\:{segment}: \\ $$$$\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\theta−\mathrm{sin}\:\mathrm{2}\theta\right)=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{2}\theta−\mathrm{sin}\:\mathrm{2}\theta=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\mathrm{1}.\mathrm{1549}\:\left(=\mathrm{66}.\mathrm{17}°\right) \\ $$$$ \\ $$$$\mathrm{tan}\:\theta={y}'=\mathrm{2}{R}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\theta}\approx\mathrm{1}.\mathrm{2376} \\ $$

Commented by mr W last updated on 12/Jul/20

Commented by ajfour last updated on 12/Jul/20

Short, succinct and Nice Sir!

$${Short},\:{succinct}\:{and}\:{Nice}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com