Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 103147 by ajfour last updated on 13/Jul/20

Answered by mr W last updated on 13/Jul/20

A(a,0)  B(0,(√(p^2 −a^2 )))  C(0,c)  D((√(q^2 −c^2 )),0)  a(√(p^2 −a^2 ))=c(√(q^2 −c^2 ))   ...(i)  intersection AB and CD at (h,k)  (h/a)+(k/(√(p^2 −a^2 )))=1  (h/(√(q^2 −c^2 )))+(k/c)=1  ((1/(ac))−(1/(√((p^2 −a^2 )(q^2 −c^2 )))))h=(1/c)−(1/(√(p^2 −a^2 )))  ⇒h=(((1/c)−(1/(√(p^2 −a^2 ))))/((1/(ac))−(1/(√((p^2 −a^2 )(q^2 −c^2 ))))))  (c−(√(p^2 −a^2 )))h=(1/2)c(√(q^2 −c^2 ))  ⇒(c−(√(p^2 −a^2 )))(((1/c)−(1/(√(p^2 −a^2 ))))/((1/(ac))−(1/(√((p^2 −a^2 )(q^2 −c^2 ))))))=(1/2)c(√(q^2 −c^2 ))   ...(ii)  from (i):  c^4 −q^2 c^2 +a^2 (p^2 −a^2 )=0  c^2 =((q^2 +(√(q^4 −4a^2 (p^2 −a^2 ))))/2)  c=(√((q^2 +(√(q^4 −4a^2 (p^2 −a^2 ))))/2))  put this into (ii) to find a...

A(a,0)B(0,p2a2)C(0,c)D(q2c2,0)ap2a2=cq2c2...(i)intersectionABandCDat(h,k)ha+kp2a2=1hq2c2+kc=1(1ac1(p2a2)(q2c2))h=1c1p2a2h=1c1p2a21ac1(p2a2)(q2c2)(cp2a2)h=12cq2c2(cp2a2)1c1p2a21ac1(p2a2)(q2c2)=12cq2c2...(ii)from(i):c4q2c2+a2(p2a2)=0c2=q2+q44a2(p2a2)2c=q2+q44a2(p2a2)2putthisinto(ii)tofinda...

Commented by mr W last updated on 13/Jul/20

Commented by ajfour last updated on 13/Jul/20

Thanks Sir, but i think, i am able  to find the exact expression,  kindly check the same..

ThanksSir,butithink,iamabletofindtheexactexpression,kindlycheckthesame..

Answered by ajfour last updated on 13/Jul/20

let ∠OAB=θ  ;  ∠OCD=φ  A_1 =A_2 =A_3 =△  4△=p^2 sin θcos θ=q^2 sin φcos φ                              ......(i)  Let  P  be point of intersection of  AB and CD.  Also  say  AP = r  ,  CP = s  OD=qsin φ ,   OB=psin θ  2△=(pcos θ−qsin φ)(rsin θ)  ..(ii)  2△=(qcos φ−psin θ)(ssin φ)  ..(iii)  2△=(qsin φ)(rsin θ)                    +(psin θ)(ssin φ)    ...(iv)  using (ii), (iii) in (iv)  ((qsin φ)/(pcos θ−qsin φ))+((psin θ)/(qcos φ−psin θ))=1  ⇒  (1/((((pcos θ)/(qsin φ)))−1))+(1/((((qcos φ)/(psin θ)))−1))=1                                                          And from (i)            ((qcos φ)/(psin θ))=((pcos θ)/(qsin φ)) = R      ....(I)  So     (1/(R−1))+(1/(R−1))=1  ⇒     R−1=2    ⇒   R=3  hence   q cos φ=3psin θ  qsin φ=(√(q^2 −9p^2 sin^2 θ))  substituting this in (I):   ⇒   ((pcos θ)/(√(q^2 −9p^2 sin^2 θ)))=3  ⇒  p^2 cos^2 θ=9q^2 −81p^2 (1−cos^2 θ)  ⇒   p^2 cos^2 θ = ((81p^2 −9q^2 )/(80))  &     q^2 cos^2 φ=9(p^2 −p^2 cos^2 θ)                              = 9(p^2 −((81p^2 −9q^2 )/(80)))  ⇒    q^2 cos^2 φ = ((81q^2 −9p^2 )/(80))  AC^( 2) = p^2 cos^2 θ+q^2 cos^2 φ  ⇒  AC^2 =(9/(10))(p^2 +q^2 )         AC = 3(√((p^2 +q^2 )/(10))) .  eg.  p=5 , q=4  AC=3(√((25+16)/(10))) = 3(√((41)/(10)))    pcos θ=(3/4)(√((9p^2 −q^2 )/5))                  = (3/4)(√((225−16)/5)) = (3/4)(√((209)/5))    psin θ=(√(25−((9×209)/(80))))                 = (1/4)(√((119)/5))    qcos φ = (3/4)(√((9q^2 −p^2 )/5))             = (3/4)(√((144−25)/5)) =(3/4)(√((119)/5))   qsin φ = (√(16−((9×119)/(80)))) =(1/4)(√((209)/5))  I shall try to graph it...

letOAB=θ;OCD=ϕA1=A2=A3=4=p2sinθcosθ=q2sinϕcosϕ......(i)LetPbepointofintersectionofABandCD.AlsosayAP=r,CP=sOD=qsinϕ,OB=psinθ2=(pcosθqsinϕ)(rsinθ)..(ii)2=(qcosϕpsinθ)(ssinϕ)..(iii)2=(qsinϕ)(rsinθ)+(psinθ)(ssinϕ)...(iv)using(ii),(iii)in(iv)qsinϕpcosθqsinϕ+psinθqcosϕpsinθ=11(pcosθqsinϕ)1+1(qcosϕpsinθ)1=1Andfrom(i)qcosϕpsinθ=pcosθqsinϕ=R....(I)So1R1+1R1=1R1=2R=3henceqcosϕ=3psinθqsinϕ=q29p2sin2θsubstitutingthisin(I):pcosθq29p2sin2θ=3p2cos2θ=9q281p2(1cos2θ)p2cos2θ=81p29q280&q2cos2ϕ=9(p2p2cos2θ)=9(p281p29q280)q2cos2ϕ=81q29p280AC2=p2cos2θ+q2cos2ϕAC2=910(p2+q2)AC=3p2+q210.eg.p=5,q=4AC=325+1610=34110pcosθ=349p2q25=34225165=342095psinθ=259×20980=141195qcosϕ=349q2p25=34144255=341195qsinϕ=169×11980=142095Ishalltrytographit...

Commented by ajfour last updated on 13/Jul/20

Commented by mr W last updated on 13/Jul/20

fantastically solved!

fantasticallysolved!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com