Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 103201 by bobhans last updated on 13/Jul/20

(D^2 −2D+1)y = x ln(x)

$$\left({D}^{\mathrm{2}} −\mathrm{2}{D}+\mathrm{1}\right){y}\:=\:{x}\:\mathrm{ln}\left({x}\right) \\ $$

Commented by bobhans last updated on 14/Jul/20

thank you both

$${thank}\:{you}\:{both}\: \\ $$

Answered by bramlex last updated on 14/Jul/20

homogenous solution   η^2 −2η+1 = 0 ; (η−1)^2 = 0  y_h = C_1 e^x +C_2 xe^x    now we use variation of  parameters y=u.e^x  +v.xe^x   differentiating yields  y′=u′e^x +ue^x +v′xe^x +v(x+1)e^x   setting u′e^x +v′xe^x  = 0  y′′  =u′e^x +ue^x +v′(x+1)e^x +v(x+2)e^x   substituting y,y′,y′′ into original  differential equation gives us  (u′e^x +ue^x +v′(x+1)e^x +v(x+2)e^x )  −2(ue^x +v(x+1)e^x )+(ue^x +vxe^x )= xln(x)  which simplifies to   u′+(x+1)v′=xe^(−x) ln(x)  now we have two equations for  u′ and v′ ⇒u′e^x +v′xe^x =0  and u′+(x+1)v′ = xe^(−x) ln(x)  solving this system of equation  u′=−x^2 e^(−x) ln(x) and  v′=xe^(−x) ln(x) .integrating gives  us u= −∫_1 ^x t^2 e^(−t) ln(t)dt and   v = ∫_1 ^x  te^(−t)  ln(t)dt   hence we conclude that a  general solution is given by   y= C_1 e^x +C_2 xe^x −e^x ∫_1 ^x t^2 e^(−t) ln(t)dt+xe^x ∫_1 ^x te^(−t) ln(t)dt

$$\mathrm{homogenous}\:\mathrm{solution}\: \\ $$$$\eta^{\mathrm{2}} −\mathrm{2}\eta+\mathrm{1}\:=\:\mathrm{0}\:;\:\left(\eta−\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{0} \\ $$$$\mathrm{y}_{\mathrm{h}} =\:\mathrm{C}_{\mathrm{1}} \mathrm{e}^{\mathrm{x}} +\mathrm{C}_{\mathrm{2}} \mathrm{xe}^{\mathrm{x}} \: \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{use}\:\mathrm{variation}\:\mathrm{of} \\ $$$$\mathrm{parameters}\:\mathrm{y}=\mathrm{u}.\mathrm{e}^{\mathrm{x}} \:+\mathrm{v}.\mathrm{xe}^{\mathrm{x}} \\ $$$$\mathrm{differentiating}\:\mathrm{yields} \\ $$$$\mathrm{y}'=\mathrm{u}'\mathrm{e}^{\mathrm{x}} +\mathrm{ue}^{\mathrm{x}} +\mathrm{v}'\mathrm{xe}^{\mathrm{x}} +\mathrm{v}\left(\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{x}} \\ $$$$\mathrm{setting}\:\mathrm{u}'\mathrm{e}^{\mathrm{x}} +\mathrm{v}'\mathrm{xe}^{\mathrm{x}} \:=\:\mathrm{0} \\ $$$$\mathrm{y}'' \\ $$$$=\mathrm{u}'\mathrm{e}^{\mathrm{x}} +\mathrm{ue}^{\mathrm{x}} +\mathrm{v}'\left(\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{x}} +\mathrm{v}\left(\mathrm{x}+\mathrm{2}\right)\mathrm{e}^{\mathrm{x}} \\ $$$$\mathrm{substituting}\:\mathrm{y},\mathrm{y}',\mathrm{y}''\:\mathrm{into}\:\mathrm{original} \\ $$$$\mathrm{differential}\:\mathrm{equation}\:\mathrm{gives}\:\mathrm{us} \\ $$$$\left(\mathrm{u}'\mathrm{e}^{\mathrm{x}} +\mathrm{ue}^{\mathrm{x}} +\mathrm{v}'\left(\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{x}} +\mathrm{v}\left(\mathrm{x}+\mathrm{2}\right)\mathrm{e}^{\mathrm{x}} \right) \\ $$$$−\mathrm{2}\left(\mathrm{ue}^{\mathrm{x}} +\mathrm{v}\left(\mathrm{x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{x}} \right)+\left(\mathrm{ue}^{\mathrm{x}} +\mathrm{vxe}^{\mathrm{x}} \right)=\:\mathrm{xln}\left(\mathrm{x}\right) \\ $$$$\mathrm{which}\:\mathrm{simplifies}\:\mathrm{to}\: \\ $$$$\mathrm{u}'+\left(\mathrm{x}+\mathrm{1}\right)\mathrm{v}'=\mathrm{xe}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right) \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{have}\:\mathrm{two}\:\mathrm{equations}\:\mathrm{for} \\ $$$$\mathrm{u}'\:\mathrm{and}\:\mathrm{v}'\:\Rightarrow\mathrm{u}'\mathrm{e}^{\mathrm{x}} +\mathrm{v}'\mathrm{xe}^{\mathrm{x}} =\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{u}'+\left(\mathrm{x}+\mathrm{1}\right)\mathrm{v}'\:=\:\mathrm{xe}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right) \\ $$$$\mathrm{solving}\:\mathrm{this}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{u}'=−\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{and} \\ $$$$\mathrm{v}'=\mathrm{xe}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{x}\right)\:.\mathrm{integrating}\:\mathrm{gives} \\ $$$$\mathrm{us}\:\mathrm{u}=\:−\underset{\mathrm{1}} {\overset{\mathrm{x}} {\int}}\mathrm{t}^{\mathrm{2}} \mathrm{e}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}\:\mathrm{and}\: \\ $$$$\mathrm{v}\:=\:\underset{\mathrm{1}} {\overset{\mathrm{x}} {\int}}\:\mathrm{te}^{−\mathrm{t}} \:\mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}\: \\ $$$$\mathrm{hence}\:\mathrm{we}\:\mathrm{conclude}\:\mathrm{that}\:\mathrm{a} \\ $$$$\mathrm{general}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\: \\ $$$$\mathrm{y}=\:\mathrm{C}_{\mathrm{1}} \mathrm{e}^{\mathrm{x}} +\mathrm{C}_{\mathrm{2}} \mathrm{xe}^{\mathrm{x}} −\mathrm{e}^{\mathrm{x}} \underset{\mathrm{1}} {\overset{\mathrm{x}} {\int}}\mathrm{t}^{\mathrm{2}} \mathrm{e}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}+\mathrm{xe}^{\mathrm{x}} \underset{\mathrm{1}} {\overset{\mathrm{x}} {\int}}\mathrm{te}^{−\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$ \\ $$

Answered by abdomsup last updated on 13/Jul/20

(he)→y^(′′) −2y^′  +y =0 ⇒  r^2 −2r+1=0 ⇒(r−1)^2 =0 ⇒r=1  ⇒y_h =(ax+b)e^(x )  =axe^(x )  +be^x   =au_1 +bu_2   W(u_1  ,u_2 )= determinant (((xe^x          e^x )),(((x+1)e^x   e^x )))  =xe^(2x) −(x+1)e^(2x)   =−e^(2x)  ≠0  w_1 = determinant (((0        e^x )),((xlnx  e^x )))=−xe^x lnx  w_2 = determinant (((xe^x               o)),(((x+1)e^x      xlnx)))=  =x^2 e^x lnx  v_1 =∫(w_1 /w)dx =∫  ((xe^x lnx)/e^(2x) ) dx  =∫ x e^(−x) lnx dx  v_2 =∫ (w_2 /w)dx =−∫ ((x^2  e^x lnx)/e^(2x) )dx  =−∫ x^2  e^(−x) lnx dx  ⇒y_p =u_1 v_1  +u_2 v_2   =xe^x  ∫^x   t e^(−t) lnt dt−e^x  ∫^x  t^(2 ) e^(−t) lnt dt  y =y_h  +y_p

$$\left({he}\right)\rightarrow{y}^{''} −\mathrm{2}{y}^{'} \:+{y}\:=\mathrm{0}\:\Rightarrow \\ $$$${r}^{\mathrm{2}} −\mathrm{2}{r}+\mathrm{1}=\mathrm{0}\:\Rightarrow\left({r}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow{r}=\mathrm{1} \\ $$$$\Rightarrow{y}_{{h}} =\left({ax}+{b}\right){e}^{{x}\:} \:={axe}^{{x}\:} \:+{be}^{{x}} \\ $$$$={au}_{\mathrm{1}} +{bu}_{\mathrm{2}} \\ $$$${W}\left({u}_{\mathrm{1}} \:,{u}_{\mathrm{2}} \right)=\begin{vmatrix}{{xe}^{{x}} \:\:\:\:\:\:\:\:\:{e}^{{x}} }\\{\left({x}+\mathrm{1}\right){e}^{{x}} \:\:{e}^{{x}} }\end{vmatrix} \\ $$$$={xe}^{\mathrm{2}{x}} −\left({x}+\mathrm{1}\right){e}^{\mathrm{2}{x}} \\ $$$$=−{e}^{\mathrm{2}{x}} \:\neq\mathrm{0} \\ $$$${w}_{\mathrm{1}} =\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:{e}^{{x}} }\\{{xlnx}\:\:{e}^{{x}} }\end{vmatrix}=−{xe}^{{x}} {lnx} \\ $$$${w}_{\mathrm{2}} =\begin{vmatrix}{{xe}^{{x}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}}\\{\left({x}+\mathrm{1}\right){e}^{{x}} \:\:\:\:\:{xlnx}}\end{vmatrix}= \\ $$$$={x}^{\mathrm{2}} {e}^{{x}} {lnx} \\ $$$${v}_{\mathrm{1}} =\int\frac{{w}_{\mathrm{1}} }{{w}}{dx}\:=\int\:\:\frac{{xe}^{{x}} {lnx}}{{e}^{\mathrm{2}{x}} }\:{dx} \\ $$$$=\int\:{x}\:{e}^{−{x}} {lnx}\:{dx} \\ $$$${v}_{\mathrm{2}} =\int\:\frac{{w}_{\mathrm{2}} }{{w}}{dx}\:=−\int\:\frac{{x}^{\mathrm{2}} \:{e}^{{x}} {lnx}}{{e}^{\mathrm{2}{x}} }{dx} \\ $$$$=−\int\:{x}^{\mathrm{2}} \:{e}^{−{x}} {lnx}\:{dx} \\ $$$$\Rightarrow{y}_{{p}} ={u}_{\mathrm{1}} {v}_{\mathrm{1}} \:+{u}_{\mathrm{2}} {v}_{\mathrm{2}} \\ $$$$={xe}^{{x}} \:\int^{{x}} \:\:{t}\:{e}^{−{t}} {lnt}\:{dt}−{e}^{{x}} \:\int^{{x}} \:{t}^{\mathrm{2}\:} {e}^{−{t}} {lnt}\:{dt} \\ $$$${y}\:={y}_{{h}} \:+{y}_{{p}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com