Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 103209 by nimnim last updated on 13/Jul/20

Answered by bramlex last updated on 13/Jul/20

n = 7k+1 ...(1)×6  n= 6p+3 ...(2)×7  n = 5q +2...(3)  ⇒ (2)−(1)  ⇒n = 42(p−k)+15 ...(4)  set p−k = l  consider   5q+2 = 42l+15   ⇒2 (mod 5) = 42l +15  ⇒2l = 2 (mod 5), l = 1 (mod 5)  ⇔ l = 5t+1  n = 42l +15 = 42(5t+1)+15  n = 210t + 57

$$\mathrm{n}\:=\:\mathrm{7k}+\mathrm{1}\:...\left(\mathrm{1}\right)×\mathrm{6} \\ $$$$\mathrm{n}=\:\mathrm{6p}+\mathrm{3}\:...\left(\mathrm{2}\right)×\mathrm{7} \\ $$$$\mathrm{n}\:=\:\mathrm{5q}\:+\mathrm{2}...\left(\mathrm{3}\right) \\ $$$$\Rightarrow\:\left(\mathrm{2}\right)−\left(\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{n}\:=\:\mathrm{42}\left(\mathrm{p}−\mathrm{k}\right)+\mathrm{15}\:...\left(\mathrm{4}\right) \\ $$$$\mathrm{set}\:\mathrm{p}−\mathrm{k}\:=\:{l} \\ $$$$\mathrm{consider}\: \\ $$$$\mathrm{5q}+\mathrm{2}\:=\:\mathrm{42}{l}+\mathrm{15}\: \\ $$$$\Rightarrow\mathrm{2}\:\left({mod}\:\mathrm{5}\right)\:=\:\mathrm{42}{l}\:+\mathrm{15} \\ $$$$\Rightarrow\mathrm{2}{l}\:=\:\mathrm{2}\:\left({mod}\:\mathrm{5}\right),\:{l}\:=\:\mathrm{1}\:\left({mod}\:\mathrm{5}\right) \\ $$$$\Leftrightarrow\:{l}\:=\:\mathrm{5}{t}+\mathrm{1} \\ $$$${n}\:=\:\mathrm{42}{l}\:+\mathrm{15}\:=\:\mathrm{42}\left(\mathrm{5}{t}+\mathrm{1}\right)+\mathrm{15} \\ $$$${n}\:=\:\mathrm{210}{t}\:+\:\mathrm{57}\: \\ $$

Commented by nimnim last updated on 13/Jul/20

thanks

$${thanks} \\ $$

Answered by floor(10²Eta[1]) last updated on 13/Jul/20

(1)x≡1(mod 7)⇒x=7a+1  (2)x≡3(mod 6)  (3)x≡2(mod 5)  (2):7a+1≡3(mod 6)⇒a≡2(mod 6)  ⇒a=6b+2  ⇒x=7(6b+2)+1=42b+15  (3):42b+15≡2(mod 5)⇒2b≡2(mod 5)  ⇒b≡1(mod 5)⇒b=5c+1  ⇒x=42(5c+1)+15  ⇒x=210c+57, c∈Z

$$\left(\mathrm{1}\right)\mathrm{x}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{x}=\mathrm{7a}+\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\mathrm{x}\equiv\mathrm{3}\left(\mathrm{mod}\:\mathrm{6}\right) \\ $$$$\left(\mathrm{3}\right)\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\left(\mathrm{2}\right):\mathrm{7a}+\mathrm{1}\equiv\mathrm{3}\left(\mathrm{mod}\:\mathrm{6}\right)\Rightarrow\mathrm{a}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{6}\right) \\ $$$$\Rightarrow\mathrm{a}=\mathrm{6b}+\mathrm{2} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{7}\left(\mathrm{6b}+\mathrm{2}\right)+\mathrm{1}=\mathrm{42b}+\mathrm{15} \\ $$$$\left(\mathrm{3}\right):\mathrm{42b}+\mathrm{15}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{2b}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\Rightarrow\mathrm{b}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{b}=\mathrm{5c}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{42}\left(\mathrm{5c}+\mathrm{1}\right)+\mathrm{15} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{210c}+\mathrm{57},\:\mathrm{c}\in\mathbb{Z} \\ $$

Commented by nimnim last updated on 13/Jul/20

Thanks

$${Thanks} \\ $$

Answered by 1549442205 last updated on 13/Jul/20

From the condition that number when  divided by 6 gives remainder 3 and  when divided by 5 gives remainder 2  it follows that if adding that number   to 3 we get a multiple of 30.Hence  Denoting by n the  number we need find  then n=30k−3.On the other hands,n=7m+1.We  infer 30k+3=7m+1⇒m=((30k−4)/7)=4k+((2k−4)/7)  Put ((2k−4)/7)=p⇒k=((7p+4)/2)=3p+2+(p/2)  Put (p/2)=q⇒p=2q⇒k=7q+2  m=30q+8⇒n=210q+57.Thus,the   number we need find is  n=210q+57(q∈N)

$$\mathrm{From}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that}\:\mathrm{number}\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:\mathrm{6}\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{3}\:\mathrm{and} \\ $$$$\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{5}\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{2} \\ $$$$\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{if}\:\mathrm{adding}\:\mathrm{that}\:\mathrm{number}\: \\ $$$$\mathrm{to}\:\mathrm{3}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{30}.\mathrm{Hence} \\ $$$$\mathrm{Denoting}\:\mathrm{by}\:\mathrm{n}\:\mathrm{the}\:\:\mathrm{number}\:\mathrm{we}\:\mathrm{need}\:\mathrm{find} \\ $$$$\mathrm{then}\:\mathrm{n}=\mathrm{30k}−\mathrm{3}.\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands},\mathrm{n}=\mathrm{7m}+\mathrm{1}.\mathrm{We} \\ $$$$\mathrm{infer}\:\mathrm{30k}+\mathrm{3}=\mathrm{7m}+\mathrm{1}\Rightarrow\mathrm{m}=\frac{\mathrm{30k}−\mathrm{4}}{\mathrm{7}}=\mathrm{4k}+\frac{\mathrm{2k}−\mathrm{4}}{\mathrm{7}} \\ $$$$\mathrm{Put}\:\frac{\mathrm{2k}−\mathrm{4}}{\mathrm{7}}=\mathrm{p}\Rightarrow\mathrm{k}=\frac{\mathrm{7p}+\mathrm{4}}{\mathrm{2}}=\mathrm{3p}+\mathrm{2}+\frac{\mathrm{p}}{\mathrm{2}} \\ $$$$\mathrm{Put}\:\frac{\mathrm{p}}{\mathrm{2}}=\mathrm{q}\Rightarrow\mathrm{p}=\mathrm{2q}\Rightarrow\mathrm{k}=\mathrm{7q}+\mathrm{2} \\ $$$$\mathrm{m}=\mathrm{30q}+\mathrm{8}\Rightarrow\mathrm{n}=\mathrm{210q}+\mathrm{57}.\mathrm{Thus},\mathrm{the}\: \\ $$$$\mathrm{number}\:\mathrm{we}\:\mathrm{need}\:\mathrm{find}\:\mathrm{is} \\ $$$$\boldsymbol{\mathrm{n}}=\mathrm{210}\boldsymbol{\mathrm{q}}+\mathrm{57}\left(\boldsymbol{\mathrm{q}}\in\mathbb{N}\right) \\ $$$$ \\ $$

Commented by nimnim last updated on 13/Jul/20

Thanks

$${Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com