Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103220 by Dwaipayan Shikari last updated on 13/Jul/20

∫_0 ^∞ (x^3 /(e^x +1))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{{e}^{{x}} +\mathrm{1}}{dx} \\ $$

Answered by mathmax by abdo last updated on 13/Jul/20

I =∫_0 ^∞  (x^3 /(e^x +1))dx ⇒ I =∫_0 ^∞   ((x^3  e^(−x) )/(1+e^(−x) ))dx =∫_0 ^∞  x^(3 ) e^(−x)  (Σ_(n=0) ^∞ (−1)^n  e^(−nx) )dx  =Σ_(n=0) ^∞  (−1)^(n )  ∫_0 ^∞   x^3  e^(−(n+1)x ) dx  =_((n+1)x =t) Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞ (t^3 /((n+1)^3 )) e^(−t )  (dt/((n+1)))  =Σ_(n=0) ^∞  (((−1)^n )/((n+1)^4 )) ∫_0 ^∞  t^3  e^(−t)  dt  we know  ∫_0 ^∞  t^(x−1)  e^(−t)  dt =Γ(x) ⇒  I =Γ(4)×Σ_(n=1) ^∞  (((−1)^(n−1) )/n^4 )  =−3!×Σ_(n=1) ^∞  (((−1)^n )/n^4 )  we have δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x ) =(2^(1−x) −1)ξ(x) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^4 ) =δ(4) =(2^(−3) −1)ξ(4) =((1/8)−1)ξ(4) =−(7/8)ξ(4) ⇒  I =−(3!)×(−(7/8))ξ(4) =((3.2.7)/(4.2))ξ(4) =((21)/4)ξ(4)  if ξ(4) =(π^4 /(90)) we get  I =((21π^4 )/(360)) =((3.7π^4 )/(3.120)) ⇒I =((7π^4 )/(120))

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{1}}\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{−\mathrm{x}} }\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{3}\:} \mathrm{e}^{−\mathrm{x}} \:\left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{nx}} \right)\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}\:} \:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{x}^{\mathrm{3}} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}\:} \mathrm{dx}\:\:=_{\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}\:=\mathrm{t}} \sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{3}} }{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\:\mathrm{e}^{−\mathrm{t}\:} \:\frac{\mathrm{dt}}{\left(\mathrm{n}+\mathrm{1}\right)} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\:\mathrm{we}\:\mathrm{know}\:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{x}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\Gamma\left(\mathrm{x}\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=\Gamma\left(\mathrm{4}\right)×\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}^{\mathrm{4}} }\:\:=−\mathrm{3}!×\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{4}} } \\ $$$$\mathrm{we}\:\mathrm{have}\:\delta\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{x}} }\:=\left(\mathrm{2}^{\mathrm{1}−\mathrm{x}} −\mathrm{1}\right)\xi\left(\mathrm{x}\right)\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{4}} }\:=\delta\left(\mathrm{4}\right)\:=\left(\mathrm{2}^{−\mathrm{3}} −\mathrm{1}\right)\xi\left(\mathrm{4}\right)\:=\left(\frac{\mathrm{1}}{\mathrm{8}}−\mathrm{1}\right)\xi\left(\mathrm{4}\right)\:=−\frac{\mathrm{7}}{\mathrm{8}}\xi\left(\mathrm{4}\right)\:\Rightarrow \\ $$$$\mathrm{I}\:=−\left(\mathrm{3}!\right)×\left(−\frac{\mathrm{7}}{\mathrm{8}}\right)\xi\left(\mathrm{4}\right)\:=\frac{\mathrm{3}.\mathrm{2}.\mathrm{7}}{\mathrm{4}.\mathrm{2}}\xi\left(\mathrm{4}\right)\:=\frac{\mathrm{21}}{\mathrm{4}}\xi\left(\mathrm{4}\right)\:\:\mathrm{if}\:\xi\left(\mathrm{4}\right)\:=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{I}\:=\frac{\mathrm{21}\pi^{\mathrm{4}} }{\mathrm{360}}\:=\frac{\mathrm{3}.\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{3}.\mathrm{120}}\:\Rightarrow\mathrm{I}\:=\frac{\mathrm{7}\pi^{\mathrm{4}} }{\mathrm{120}} \\ $$

Commented by Dwaipayan Shikari last updated on 13/Jul/20

Thanking you

$${Thanking}\:{you} \\ $$

Commented by abdomsup last updated on 13/Jul/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com