Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103220 by Dwaipayan Shikari last updated on 13/Jul/20

∫_0 ^∞ (x^3 /(e^x +1))dx

0x3ex+1dx

Answered by mathmax by abdo last updated on 13/Jul/20

I =∫_0 ^∞  (x^3 /(e^x +1))dx ⇒ I =∫_0 ^∞   ((x^3  e^(−x) )/(1+e^(−x) ))dx =∫_0 ^∞  x^(3 ) e^(−x)  (Σ_(n=0) ^∞ (−1)^n  e^(−nx) )dx  =Σ_(n=0) ^∞  (−1)^(n )  ∫_0 ^∞   x^3  e^(−(n+1)x ) dx  =_((n+1)x =t) Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞ (t^3 /((n+1)^3 )) e^(−t )  (dt/((n+1)))  =Σ_(n=0) ^∞  (((−1)^n )/((n+1)^4 )) ∫_0 ^∞  t^3  e^(−t)  dt  we know  ∫_0 ^∞  t^(x−1)  e^(−t)  dt =Γ(x) ⇒  I =Γ(4)×Σ_(n=1) ^∞  (((−1)^(n−1) )/n^4 )  =−3!×Σ_(n=1) ^∞  (((−1)^n )/n^4 )  we have δ(x) =Σ_(n=1) ^∞  (((−1)^n )/n^x ) =(2^(1−x) −1)ξ(x) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n^4 ) =δ(4) =(2^(−3) −1)ξ(4) =((1/8)−1)ξ(4) =−(7/8)ξ(4) ⇒  I =−(3!)×(−(7/8))ξ(4) =((3.2.7)/(4.2))ξ(4) =((21)/4)ξ(4)  if ξ(4) =(π^4 /(90)) we get  I =((21π^4 )/(360)) =((3.7π^4 )/(3.120)) ⇒I =((7π^4 )/(120))

I=0x3ex+1dxI=0x3ex1+exdx=0x3ex(n=0(1)nenx)dx=n=0(1)n0x3e(n+1)xdx=(n+1)x=tn=0(1)n0t3(n+1)3etdt(n+1)=n=0(1)n(n+1)40t3etdtweknow0tx1etdt=Γ(x)I=Γ(4)×n=1(1)n1n4=3!×n=1(1)nn4wehaveδ(x)=n=1(1)nnx=(21x1)ξ(x)n=1(1)nn4=δ(4)=(231)ξ(4)=(181)ξ(4)=78ξ(4)I=(3!)×(78)ξ(4)=3.2.74.2ξ(4)=214ξ(4)ifξ(4)=π490wegetI=21π4360=3.7π43.120I=7π4120

Commented by Dwaipayan Shikari last updated on 13/Jul/20

Thanking you

Thankingyou

Commented by abdomsup last updated on 13/Jul/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com