Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 103310 by Quvonchbek last updated on 14/Jul/20

Commented by Quvonchbek last updated on 14/Jul/20

prove

$$\boldsymbol{{prove}} \\ $$

Answered by 1549442205 last updated on 14/Jul/20

Applying Cauchy′s inequality for   three positive numbers we have:  (a^3 /(b+c))+((b+c)/4)+(1/2)≥3^3 (√((a^3 /(b+c)).((b+c)/4).(1/2)))=((3a)/2)  Similarly,we have: (b^3 /(c+a))+((c+a)/4)+(1/2)≥((3b)/2)  (c^3 /(a+b))+((a+b)/4)+(1/2)≥((3c)/2).Adding three  above inequalities we get  LHS+((a+b+c)/2)+(3/2)≥((3(a+b+c))/2)  ⇔LHS≥a+b+c−(3/2)(1)  On the other hands,  a+b+c≥3^3 (√(abc))=3(2)(due to abc=1   (bythe hypothesis)).From (1) and (2)  we get (a^3 /(b+c))+(b^3 /(c+a))+(c^3 /(a+b))≥(3/2) (q.e.d)  The equality ocurrs if and only if  a=b=c=1  second way:  Applying Cauchy−Schwarz we have:  (a^3 /(b+c))+(b^3 /(c+a))+(c^3 /(a+b))⇔(a^4 /(a(b+c)))+(b^4 /(b(c+a)))+(c^4 /(c(a+b)))  ≥(((a^2 +b^2 +c^2 )^2 )/(2(ab+bc+ca)))≥(((ab+bc+ca)^2 )/(2(ab+bc+ca)))=((ab+bc+ca)/2) (3)  On the other hands,  ab+bc+ca≥3^3 (√(ab.bc.ca))=3^3 (√((abc)^2 ))=3(4)  (due to abc=1(by the hypothesis))  From(3)and (4) we get  (a^3 /(b+c))+(b^3 /(c+a))+(c^3 /(a+b))≥(3/2).The equality ocurrs  if and only if a=b=c=1(q.e.d)

$$\mathrm{Applying}\:\mathrm{Cauchy}'\mathrm{s}\:\mathrm{inequality}\:\mathrm{for}\: \\ $$$$\mathrm{three}\:\mathrm{positive}\:\mathrm{numbers}\:\mathrm{we}\:\mathrm{have}: \\ $$$$\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}+\mathrm{c}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{b}+\mathrm{c}}.\frac{\mathrm{b}+\mathrm{c}}{\mathrm{4}}.\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{3a}}{\mathrm{2}} \\ $$$$\mathrm{Similarly},\mathrm{we}\:\mathrm{have}:\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}+\mathrm{a}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{3b}}{\mathrm{2}} \\ $$$$\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{a}+\mathrm{b}}+\frac{\mathrm{a}+\mathrm{b}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\geqslant\frac{\mathrm{3c}}{\mathrm{2}}.\mathrm{Adding}\:\mathrm{three} \\ $$$$\mathrm{above}\:\mathrm{inequalities}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{LHS}+\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}\geqslant\frac{\mathrm{3}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)}{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{LHS}\geqslant\mathrm{a}+\mathrm{b}+\mathrm{c}−\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{1}\right) \\ $$$$\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands}, \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\mathrm{abc}}=\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{due}\:\mathrm{to}\:\mathrm{abc}=\mathrm{1}\right. \\ $$$$\left.\:\left(\mathrm{bythe}\:\mathrm{hypothesis}\right)\right).\mathrm{From}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right) \\ $$$$\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{get}}\:\frac{\boldsymbol{\mathrm{a}}^{\mathrm{3}} }{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}}+\frac{\boldsymbol{\mathrm{b}}^{\mathrm{3}} }{\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{c}}^{\mathrm{3}} }{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}\geqslant\frac{\mathrm{3}}{\mathrm{2}}\:\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{equality}}\:\boldsymbol{\mathrm{ocurrs}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{if}} \\ $$$$\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{c}}=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{second}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\mathrm{Applying}\:\mathrm{Cauchy}−\mathrm{Schwarz}\:\mathrm{we}\:\mathrm{have}: \\ $$$$\frac{\boldsymbol{\mathrm{a}}^{\mathrm{3}} }{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}}+\frac{\boldsymbol{\mathrm{b}}^{\mathrm{3}} }{\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{c}}^{\mathrm{3}} }{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}\Leftrightarrow\frac{\boldsymbol{\mathrm{a}}^{\mathrm{4}} }{\mathrm{a}\left(\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}\right)}+\frac{\boldsymbol{\mathrm{b}}^{\mathrm{4}} }{\mathrm{b}\left(\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}\right)}+\frac{\boldsymbol{\mathrm{c}}^{\mathrm{4}} }{\mathrm{c}\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}\right)} \\ $$$$\geqslant\frac{\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)}\geqslant\frac{\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\right)}=\frac{\mathrm{ab}+\mathrm{bc}+\mathrm{ca}}{\mathrm{2}}\:\left(\mathrm{3}\right) \\ $$$$\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands}, \\ $$$$\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\geqslant\mathrm{3}\:^{\mathrm{3}} \sqrt{\mathrm{ab}.\mathrm{bc}.\mathrm{ca}}=\mathrm{3}\:^{\mathrm{3}} \sqrt{\left(\mathrm{abc}\right)^{\mathrm{2}} }=\mathrm{3}\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{abc}=\mathrm{1}\left(\mathrm{by}\:\mathrm{the}\:\mathrm{hypothesis}\right)\right) \\ $$$$\mathrm{From}\left(\mathrm{3}\right)\mathrm{and}\:\left(\mathrm{4}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\boldsymbol{\mathrm{a}}^{\mathrm{3}} }{\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}}+\frac{\boldsymbol{\mathrm{b}}^{\mathrm{3}} }{\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}}+\frac{\boldsymbol{\mathrm{c}}^{\mathrm{3}} }{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}\geqslant\frac{\mathrm{3}}{\mathrm{2}}.\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{equality}}\:\boldsymbol{\mathrm{ocurrs}} \\ $$$$\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{b}}=\boldsymbol{\mathrm{c}}=\mathrm{1}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com