Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 103400 by abony1303 last updated on 14/Jul/20

A particle′s trajectory is described by  x=e^t +e^(−t)      y=2t  Find the distance that the particle  traveled for 0≤t≤2

$$\mathrm{A}\:\mathrm{particle}'\mathrm{s}\:\mathrm{trajectory}\:\mathrm{is}\:\mathrm{described}\:\mathrm{by} \\ $$$$\mathrm{x}=\mathrm{e}^{\mathrm{t}} +\mathrm{e}^{−\mathrm{t}} \:\:\:\:\:\mathrm{y}=\mathrm{2t} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{that}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{traveled}\:\mathrm{for}\:\mathrm{0}\leqslant\mathrm{t}\leqslant\mathrm{2} \\ $$

Commented by abony1303 last updated on 14/Jul/20

Pls help

$$\mathrm{Pls}\:\mathrm{help} \\ $$

Answered by mr W last updated on 14/Jul/20

dx=(e^t −e^(−t) )dt  dy=2dt  ds=(√((dx)^2 +(dy)^2 ))=(√((e^t −e^(−t) )^2 +4)) dt  =(e^t +e^(−t) )dt  s(t)=∫_0 ^t ds=∫_0 ^t (e^t +e^(−t) )dt=[e^t −e^(−t) ]_0 ^t   =e^t −e^(−t)   ⇒s(2)=e^2 −(1/e^2 )

$${dx}=\left({e}^{{t}} −{e}^{−{t}} \right){dt} \\ $$$${dy}=\mathrm{2}{dt} \\ $$$${ds}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} }=\sqrt{\left({e}^{{t}} −{e}^{−{t}} \right)^{\mathrm{2}} +\mathrm{4}}\:{dt} \\ $$$$=\left({e}^{{t}} +{e}^{−{t}} \right){dt} \\ $$$${s}\left({t}\right)=\int_{\mathrm{0}} ^{{t}} {ds}=\int_{\mathrm{0}} ^{{t}} \left({e}^{{t}} +{e}^{−{t}} \right){dt}=\left[{e}^{{t}} −{e}^{−{t}} \right]_{\mathrm{0}} ^{{t}} \\ $$$$={e}^{{t}} −{e}^{−{t}} \\ $$$$\Rightarrow{s}\left(\mathrm{2}\right)={e}^{\mathrm{2}} −\frac{\mathrm{1}}{{e}^{\mathrm{2}} } \\ $$

Commented by abony1303 last updated on 14/Jul/20

thank you ser. Can you pls explain why   you differentiated x and y, and I can′t  understand the formula in 3rd raw.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{pls}\:\mathrm{explain}\:\mathrm{why}\: \\ $$$$\mathrm{you}\:\mathrm{differentiated}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y},\:\mathrm{and}\:\mathrm{I}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{understand}\:\mathrm{the}\:\mathrm{formula}\:\mathrm{in}\:\mathrm{3rd}\:\mathrm{raw}. \\ $$

Commented by mr W last updated on 14/Jul/20

do you know this:  ds=(√((dx)^2 +(dy)^2 ))=(√(1+((dy/dx))^2 )) dx

$${do}\:{you}\:{know}\:{this}: \\ $$$${ds}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} }=\sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }\:{dx} \\ $$

Commented by mr W last updated on 14/Jul/20

if x=f(t), y=g(t),  in time dt the object covers a  distance in x−direction dx=f′(t)dt  and in y−direction dy=g′(t)dt. the  total distance it travels in this time  is ds=(√((dx)^2 +(dy)^2 ))=(√((f′(t))^2 +(g′(t))^2 ))dt

$${if}\:{x}={f}\left({t}\right),\:{y}={g}\left({t}\right), \\ $$$${in}\:{time}\:{dt}\:{the}\:{object}\:{covers}\:{a} \\ $$$${distance}\:{in}\:{x}−{direction}\:{dx}={f}'\left({t}\right){dt} \\ $$$${and}\:{in}\:{y}−{direction}\:{dy}={g}'\left({t}\right){dt}.\:{the} \\ $$$${total}\:{distance}\:{it}\:{travels}\:{in}\:{this}\:{time} \\ $$$${is}\:{ds}=\sqrt{\left({dx}\right)^{\mathrm{2}} +\left({dy}\right)^{\mathrm{2}} }=\sqrt{\left({f}'\left({t}\right)\right)^{\mathrm{2}} +\left({g}'\left({t}\right)\right)^{\mathrm{2}} }{dt} \\ $$

Answered by OlafThorendsen last updated on 14/Jul/20

0≤t≤2 ⇔ 0≤y≤4  x = e^t +e^(−t)  = 2cht = 2ch(y/2)  (dx/dy) = 2×(1/2)sh(y/2) = sh(y/2)  d = ∫_0 ^4 (√(1+((dx/dy))^2 ))dy  d = ∫_0 ^4 (√(1+sh^2 (y/2)))dy  d = ∫_0 ^4 ch(y/2)dy  d = [2sh(y/2)]_0 ^4  = 2sh2 = e^2 −(1/e^2 )

$$\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\:\Leftrightarrow\:\mathrm{0}\leqslant{y}\leqslant\mathrm{4} \\ $$$${x}\:=\:{e}^{{t}} +{e}^{−{t}} \:=\:\mathrm{2ch}{t}\:=\:\mathrm{2ch}\frac{{y}}{\mathrm{2}} \\ $$$$\frac{{dx}}{{dy}}\:=\:\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sh}\frac{{y}}{\mathrm{2}}\:=\:\mathrm{sh}\frac{{y}}{\mathrm{2}} \\ $$$$\mathrm{d}\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \sqrt{\mathrm{1}+\left(\frac{{dx}}{{dy}}\right)^{\mathrm{2}} }{dy} \\ $$$$\mathrm{d}\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \sqrt{\mathrm{1}+\mathrm{sh}^{\mathrm{2}} \frac{{y}}{\mathrm{2}}}{dy} \\ $$$$\mathrm{d}\:=\:\int_{\mathrm{0}} ^{\mathrm{4}} \mathrm{ch}\frac{{y}}{\mathrm{2}}{dy} \\ $$$$\mathrm{d}\:=\:\left[\mathrm{2sh}\frac{{y}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{4}} \:=\:\mathrm{2sh2}\:=\:{e}^{\mathrm{2}} −\frac{\mathrm{1}}{{e}^{\mathrm{2}} } \\ $$

Answered by Dwaipayan Shikari last updated on 14/Jul/20

(dx/dt)=e^t −e^(−t)   (dy/dt)=2  Resultant =(√(△x^2 +△y^2 ))=(√((e^t −e^(−t) )^2 +4  ))=e^t +e^(−t)   Time is bounded (0,2)  ∫_0 ^2 e^t −e^(−t) dt=e^2 −(1/e^2 )   (Resultant tracetory)

$$\frac{{dx}}{{dt}}={e}^{{t}} −{e}^{−{t}} \\ $$$$\frac{{dy}}{{dt}}=\mathrm{2} \\ $$$${Resultant}\:=\sqrt{\bigtriangleup{x}^{\mathrm{2}} +\bigtriangleup{y}^{\mathrm{2}} }=\sqrt{\left({e}^{{t}} −{e}^{−{t}} \right)^{\mathrm{2}} +\mathrm{4}\:\:}={e}^{{t}} +{e}^{−{t}} \\ $$$${Time}\:{is}\:{bounded}\:\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} {e}^{{t}} −{e}^{−{t}} {dt}={e}^{\mathrm{2}} −\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\:\:\:\left({Resultant}\:{tracetory}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com