Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 103459 by bemath last updated on 15/Jul/20

what are the complex solution tan  (z) = −2 ?

$${what}\:{are}\:{the}\:{complex}\:{solution}\:\mathrm{tan} \\ $$$$\left({z}\right)\:=\:−\mathrm{2}\:? \\ $$

Commented by mr W last updated on 15/Jul/20

z=kπ−tan^(−1) 2  z is always real!

$${z}={k}\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2} \\ $$$${z}\:{is}\:{always}\:{real}! \\ $$

Commented by bemath last updated on 15/Jul/20

nothing in complex sir?

$${nothing}\:{in}\:{complex}\:{sir}? \\ $$

Commented by mr W last updated on 15/Jul/20

a real number is also a complex  number. if you want,  z=kπ−tan^(−1) 2+0i

$${a}\:{real}\:{number}\:{is}\:{also}\:{a}\:{complex} \\ $$$${number}.\:{if}\:{you}\:{want}, \\ $$$${z}={k}\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{0}{i} \\ $$

Commented by bobhans last updated on 15/Jul/20

z = kπ−tan^(−1) (2) or z=kπ−tan^(−1) (−2)  sir?

$${z}\:=\:{k}\pi−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\:{or}\:{z}={k}\pi−\mathrm{tan}^{−\mathrm{1}} \left(−\mathrm{2}\right) \\ $$$${sir}? \\ $$

Commented by mr W last updated on 15/Jul/20

z = kπ−tan^(−1) (2)

$${z}\:=\:{k}\pi−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right) \\ $$

Commented by bramlex last updated on 15/Jul/20

tan (z) = −2 ⇒ tan (−z)=2  note tan x = tan θ ⇒x = θ+nπ  ⇒ tan (−z)= tan (tan^(−1) (2))  −z+nπ = tan^(−1) (2)   z = nπ−tan^(−1) (2) (⊕)

$$\mathrm{tan}\:\left(\mathrm{z}\right)\:=\:−\mathrm{2}\:\Rightarrow\:\mathrm{tan}\:\left(−\mathrm{z}\right)=\mathrm{2} \\ $$$$\mathrm{note}\:\mathrm{tan}\:\mathrm{x}\:=\:\mathrm{tan}\:\theta\:\Rightarrow\mathrm{x}\:=\:\theta+\mathrm{n}\pi \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(−\mathrm{z}\right)=\:\mathrm{tan}\:\left(\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\right) \\ $$$$−\mathrm{z}+\mathrm{n}\pi\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\: \\ $$$$\mathrm{z}\:=\:\mathrm{n}\pi−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\:\left(\oplus\right) \\ $$

Answered by OlafThorendsen last updated on 15/Jul/20

tanz = −2  ((sinz)/(cosz)) = −2  (((e^(iz) −e^(−iz) )/(2i))/((e^(iz) +e^(−iz) )/2)) = −2  ((e^(iz) −e^(−iz) )/(e^(iz) +e^(−iz) )) = −2i  e^(iz) −e^(−iz)  = −2i(e^(iz) +e^(−iz) )  (1+2i)e^(iz)  = (1−2i)e^(−iz)   (1+2i)e^(2iz)  = (1−2i)  e^(2iz)  = ((1−2i)/(1+2i)) = (((1−2i)^2 )/5) = −((3+4i)/5)  e^(2iz)  = e^(i(Arctan(4/3)+2kπ))   z = (1/2)Arctan(4/3)+kπ, k∈Z  Note :  ((1/2)Arctan(4/3)−π = Arctan(−2))

$$\mathrm{tan}{z}\:=\:−\mathrm{2} \\ $$$$\frac{\mathrm{sin}{z}}{\mathrm{cos}{z}}\:=\:−\mathrm{2} \\ $$$$\frac{\frac{{e}^{{iz}} −{e}^{−{iz}} }{\mathrm{2}{i}}}{\frac{{e}^{{iz}} +{e}^{−{iz}} }{\mathrm{2}}}\:=\:−\mathrm{2} \\ $$$$\frac{{e}^{{iz}} −{e}^{−{iz}} }{{e}^{{iz}} +{e}^{−{iz}} }\:=\:−\mathrm{2}{i} \\ $$$${e}^{{iz}} −{e}^{−{iz}} \:=\:−\mathrm{2}{i}\left({e}^{{iz}} +{e}^{−{iz}} \right) \\ $$$$\left(\mathrm{1}+\mathrm{2}{i}\right){e}^{{iz}} \:=\:\left(\mathrm{1}−\mathrm{2}{i}\right){e}^{−{iz}} \\ $$$$\left(\mathrm{1}+\mathrm{2}{i}\right){e}^{\mathrm{2}{iz}} \:=\:\left(\mathrm{1}−\mathrm{2}{i}\right) \\ $$$${e}^{\mathrm{2}{iz}} \:=\:\frac{\mathrm{1}−\mathrm{2}{i}}{\mathrm{1}+\mathrm{2}{i}}\:=\:\frac{\left(\mathrm{1}−\mathrm{2}{i}\right)^{\mathrm{2}} }{\mathrm{5}}\:=\:−\frac{\mathrm{3}+\mathrm{4}{i}}{\mathrm{5}} \\ $$$${e}^{\mathrm{2}{iz}} \:=\:{e}^{{i}\left(\mathrm{Arctan}\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{2}{k}\pi\right)} \\ $$$${z}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Arctan}\frac{\mathrm{4}}{\mathrm{3}}+{k}\pi,\:{k}\in\mathbb{Z} \\ $$$$\mathrm{Note}\:: \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Arctan}\frac{\mathrm{4}}{\mathrm{3}}−\pi\:=\:\mathrm{Arctan}\left(−\mathrm{2}\right)\right) \\ $$

Answered by mathmax by abdo last updated on 15/Jul/20

tanz =−2 ⇒((sinz)/(cosz))=−2 ⇒sinz =−2cosz ⇒  sin^2 z =4cos^2 z ⇒1−cos^2 z =4cos^2 z ⇒1 =5cos^2 z ⇒  cos^2 z =(1/5) ⇒cosz =+^− (1/(√5))  cosz =(1/(√5)) ⇒ch(iz) =(1/(√5)) ⇒ ((e^(iz)  +e^(−iz) )/2) =(1/(√5)) ⇒e^(iz)  +e^(−iz)  =(2/(√5))  e^(iz)  =t ⇒t+t^(−1)  =(2/(√5)) ⇒t^2  +1 =(2/(√5))t ⇒t^2  −((2t)/(√5)) +1 =0 ⇒  (√5)t^2 −2t +(√5)=0 →Δ^′  =1−5 =−4 ⇒t_1 =1+2i and t_2 =1−2i   e^(iz)  =t ⇒iz =lnt ⇒z =−iln(t) ⇒z =−iln(1+^− 2i)  case 2  cosz =−(1/(√5)) ⇒((e^(iz)  +e^(−iz) )/2) =−(1/(√5)) ⇒  e^(iz)  +e^(−iz)   =((−2)/(√5)) ⇒t +t^(−1 )  =−(2/(√5))  (t =e^(iz) ) ⇒  t^2  +1 =−(2/(√5))t ⇒t^2 +((2t)/(√5)) +1 =0 ⇒(√5)t^2 +2t +(√5)=0 →Δ^′  =1−5 =−4 ⇒  t_1 =−1+2i and t_2 =−1−2i  z =−iln(t) ⇒z =−iln(−1 +^− 2i)

$$\mathrm{tanz}\:=−\mathrm{2}\:\Rightarrow\frac{\mathrm{sinz}}{\mathrm{cosz}}=−\mathrm{2}\:\Rightarrow\mathrm{sinz}\:=−\mathrm{2cosz}\:\Rightarrow \\ $$$$\mathrm{sin}^{\mathrm{2}} \mathrm{z}\:=\mathrm{4cos}^{\mathrm{2}} \mathrm{z}\:\Rightarrow\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{z}\:=\mathrm{4cos}^{\mathrm{2}} \mathrm{z}\:\Rightarrow\mathrm{1}\:=\mathrm{5cos}^{\mathrm{2}} \mathrm{z}\:\Rightarrow \\ $$$$\mathrm{cos}^{\mathrm{2}} \mathrm{z}\:=\frac{\mathrm{1}}{\mathrm{5}}\:\Rightarrow\mathrm{cosz}\:=\overset{−} {+}\frac{\mathrm{1}}{\sqrt{\mathrm{5}}} \\ $$$$\mathrm{cosz}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{ch}\left(\mathrm{iz}\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow\:\frac{\mathrm{e}^{\mathrm{iz}} \:+\mathrm{e}^{−\mathrm{iz}} }{\mathrm{2}}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{e}^{\mathrm{iz}} \:+\mathrm{e}^{−\mathrm{iz}} \:=\frac{\mathrm{2}}{\sqrt{\mathrm{5}}} \\ $$$$\mathrm{e}^{\mathrm{iz}} \:=\mathrm{t}\:\Rightarrow\mathrm{t}+\mathrm{t}^{−\mathrm{1}} \:=\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\mathrm{t}\:\Rightarrow\mathrm{t}^{\mathrm{2}} \:−\frac{\mathrm{2t}}{\sqrt{\mathrm{5}}}\:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow \\ $$$$\sqrt{\mathrm{5}}\mathrm{t}^{\mathrm{2}} −\mathrm{2t}\:+\sqrt{\mathrm{5}}=\mathrm{0}\:\rightarrow\Delta^{'} \:=\mathrm{1}−\mathrm{5}\:=−\mathrm{4}\:\Rightarrow\mathrm{t}_{\mathrm{1}} =\mathrm{1}+\mathrm{2i}\:\mathrm{and}\:\mathrm{t}_{\mathrm{2}} =\mathrm{1}−\mathrm{2i}\: \\ $$$$\mathrm{e}^{\mathrm{iz}} \:=\mathrm{t}\:\Rightarrow\mathrm{iz}\:=\mathrm{lnt}\:\Rightarrow\mathrm{z}\:=−\mathrm{iln}\left(\mathrm{t}\right)\:\Rightarrow\mathrm{z}\:=−\mathrm{iln}\left(\mathrm{1}\overset{−} {+}\mathrm{2i}\right) \\ $$$$\mathrm{case}\:\mathrm{2}\:\:\mathrm{cosz}\:=−\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow\frac{\mathrm{e}^{\mathrm{iz}} \:+\mathrm{e}^{−\mathrm{iz}} }{\mathrm{2}}\:=−\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow \\ $$$$\mathrm{e}^{\mathrm{iz}} \:+\mathrm{e}^{−\mathrm{iz}} \:\:=\frac{−\mathrm{2}}{\sqrt{\mathrm{5}}}\:\Rightarrow\mathrm{t}\:+\mathrm{t}^{−\mathrm{1}\:} \:=−\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:\:\left(\mathrm{t}\:=\mathrm{e}^{\mathrm{iz}} \right)\:\Rightarrow \\ $$$$\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}\:=−\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\mathrm{t}\:\Rightarrow\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{2t}}{\sqrt{\mathrm{5}}}\:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow\sqrt{\mathrm{5}}\mathrm{t}^{\mathrm{2}} +\mathrm{2t}\:+\sqrt{\mathrm{5}}=\mathrm{0}\:\rightarrow\Delta^{'} \:=\mathrm{1}−\mathrm{5}\:=−\mathrm{4}\:\Rightarrow \\ $$$$\mathrm{t}_{\mathrm{1}} =−\mathrm{1}+\mathrm{2i}\:\mathrm{and}\:\mathrm{t}_{\mathrm{2}} =−\mathrm{1}−\mathrm{2i} \\ $$$$\mathrm{z}\:=−\mathrm{iln}\left(\mathrm{t}\right)\:\Rightarrow\mathrm{z}\:=−\mathrm{iln}\left(−\mathrm{1}\:\overset{−} {+}\mathrm{2i}\right) \\ $$$$ \\ $$

Commented by mr W last updated on 15/Jul/20

but t_1 =−1+2i=e^((π−tan^(−1) 2)i)   z=−iln t_1 =ln t_1 ^(−i) =ln e^((π−tan^(−1) 2)i(−i))   =π−tan^(−1) 2

$${but}\:{t}_{\mathrm{1}} =−\mathrm{1}+\mathrm{2}{i}={e}^{\left(\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\right){i}} \\ $$$${z}=−{i}\mathrm{ln}\:{t}_{\mathrm{1}} =\mathrm{ln}\:{t}_{\mathrm{1}} ^{−{i}} =\mathrm{ln}\:{e}^{\left(\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2}\right){i}\left(−{i}\right)} \\ $$$$=\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 16/Jul/20

thank you sir i havent verify..

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{havent}\:\mathrm{verify}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com