Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 103716 by mr W last updated on 16/Jul/20

Commented by mr W last updated on 16/Jul/20

after thinking about it for two days,  i think i have found the general  solution which is simply  C_m ^(n−m+1) .  please give a try, prove or disprove it!

$${after}\:{thinking}\:{about}\:{it}\:{for}\:{two}\:{days}, \\ $$$${i}\:{think}\:{i}\:{have}\:{found}\:{the}\:{general} \\ $$$${solution}\:{which}\:{is}\:{simply} \\ $$$$\boldsymbol{{C}}_{\boldsymbol{{m}}} ^{\boldsymbol{{n}}−\boldsymbol{{m}}+\mathrm{1}} . \\ $$$${please}\:{give}\:{a}\:{try},\:{prove}\:{or}\:{disprove}\:{it}! \\ $$

Commented by prakash jain last updated on 16/Jul/20

s_1  s_2   s_3   s_4  ...s_n   if we draw m bars and select  student to the left of bar we have  total n postion for bars.  s_1 ∙ s_2 ∙  s_3   ∙s_4  ∙...∙s_n   So for example 6,2 case  s∣ s s s s∣ s  We need m bars,  the first bar can have 1 or more  students to the left. The remaining  bars can only have 2 or more  student to the left of bar.  0 or more student can be present  after last bar.  Σ_(i=1) ^n x(Σ_(i=2) ^n x^2 )^(m−1) Σ_(i=0) ^n x^i   ((x(1−x^n ))/(1−x))×((x^(2(m−1)) (1−x^(n−1) )^(m−1) )/((1−x)^(m−1) ))×(((1−x^(n+1) ))/(1−x))  m≥1  =x^(2m−1) ×(1/((1−x)^(m+1) ))  =x^(2m−1) Σ_(i=0) ^∞ C_i ^(m+i) x^i   sum of student must be n  2m−1+i=n⇒i=n+1−2m  Required result  C_(n+1−2m) ^(m+n+1−2m) =C_(n+1−2m) ^(n−m+1)   =C_((n−m+1)−(n+1−2m)) ^(n−m+1) =C_m ^(n−m+1)   Please feedback.

$$\mathrm{s}_{\mathrm{1}} \:\mathrm{s}_{\mathrm{2}} \:\:\mathrm{s}_{\mathrm{3}} \:\:\mathrm{s}_{\mathrm{4}} \:...\mathrm{s}_{\mathrm{n}} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{draw}\:{m}\:\mathrm{bars}\:\mathrm{and}\:\mathrm{select} \\ $$$$\mathrm{student}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left}\:\mathrm{of}\:\mathrm{bar}\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{total}\:\mathrm{n}\:\mathrm{postion}\:\mathrm{for}\:\mathrm{bars}. \\ $$$$\mathrm{s}_{\mathrm{1}} \centerdot\:\mathrm{s}_{\mathrm{2}} \centerdot\:\:\mathrm{s}_{\mathrm{3}} \:\:\centerdot\mathrm{s}_{\mathrm{4}} \:\centerdot...\centerdot\mathrm{s}_{\mathrm{n}} \\ $$$$\mathrm{So}\:\mathrm{for}\:\mathrm{example}\:\mathrm{6},\mathrm{2}\:\mathrm{case} \\ $$$$\mathrm{s}\mid\:\mathrm{s}\:\mathrm{s}\:\mathrm{s}\:\mathrm{s}\mid\:\mathrm{s} \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{m}\:\mathrm{bars}, \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{bar}\:\mathrm{can}\:\mathrm{have}\:\mathrm{1}\:\mathrm{or}\:\mathrm{more} \\ $$$$\mathrm{students}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left}.\:\mathrm{The}\:\mathrm{remaining} \\ $$$$\mathrm{bars}\:\mathrm{can}\:\mathrm{only}\:\mathrm{have}\:\mathrm{2}\:\mathrm{or}\:\mathrm{more} \\ $$$$\mathrm{student}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left}\:\mathrm{of}\:\mathrm{bar}. \\ $$$$\mathrm{0}\:\mathrm{or}\:\mathrm{more}\:\mathrm{student}\:\mathrm{can}\:\mathrm{be}\:\mathrm{present} \\ $$$$\mathrm{after}\:\mathrm{last}\:\mathrm{bar}. \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}\left(\underset{{i}=\mathrm{2}} {\overset{{n}} {\sum}}{x}^{\mathrm{2}} \right)^{{m}−\mathrm{1}} \underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{i}} \\ $$$$\frac{{x}\left(\mathrm{1}−{x}^{{n}} \right)}{\mathrm{1}−{x}}×\frac{{x}^{\mathrm{2}\left({m}−\mathrm{1}\right)} \left(\mathrm{1}−{x}^{{n}−\mathrm{1}} \right)^{{m}−\mathrm{1}} }{\left(\mathrm{1}−{x}\right)^{{m}−\mathrm{1}} }×\frac{\left(\mathrm{1}−{x}^{{n}+\mathrm{1}} \right)}{\mathrm{1}−{x}} \\ $$$${m}\geqslant\mathrm{1} \\ $$$$={x}^{\mathrm{2}{m}−\mathrm{1}} ×\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{{m}+\mathrm{1}} } \\ $$$$={x}^{\mathrm{2}{m}−\mathrm{1}} \underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{{i}} ^{{m}+{i}} {x}^{{i}} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{student}\:\mathrm{must}\:\mathrm{be}\:{n} \\ $$$$\mathrm{2}{m}−\mathrm{1}+{i}={n}\Rightarrow{i}={n}+\mathrm{1}−\mathrm{2}{m} \\ $$$$\mathrm{Required}\:\mathrm{result} \\ $$$$\mathrm{C}_{{n}+\mathrm{1}−\mathrm{2}{m}} ^{{m}+{n}+\mathrm{1}−\mathrm{2}{m}} ={C}_{{n}+\mathrm{1}−\mathrm{2}{m}} ^{{n}−{m}+\mathrm{1}} \\ $$$$={C}_{\left({n}−{m}+\mathrm{1}\right)−\left({n}+\mathrm{1}−\mathrm{2}{m}\right)} ^{{n}−{m}+\mathrm{1}} ={C}_{{m}} ^{{n}−{m}+\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{feedback}. \\ $$

Commented by mr W last updated on 16/Jul/20

correct sir!

$${correct}\:{sir}! \\ $$

Answered by mr W last updated on 17/Jul/20

this is my solution    ★ stand for m selected students  ♦⧫ stand for places for other students    ♦★⧫★⧫★⧫★⧫...⧫★⧫★◊    ◊ may be empty or occupied by any  number of students  ⧫ must be occupied by at least one  student    we have two ◊ places, generating  function of each one is  1+x+x^2 +x^3 +...=(1/(1−x))    we have (m−1) ⧫ places, generating  function of each one is  x+x^2 +x^3 +...=(x/(1−x))    the total number of students who  occupy the ◊ and ⧫ places is (n−m).    the number of ways to occupy these  places is the coefficient of the x^(n−m)   term of the following generating  function  (1+x+x^2 +x^3 +...)^2 (x+x^2 +x^3 +...)^(m−1)   =((1/(1−x)))^2 ((x/(1−x)))^(m−1) =(x^(m−1) /((1−x)^(m+1) ))  =x^(m−1) Σ_(k=0) ^∞ C_m ^(k+m) x^k   m−1+k=n−m ⇒k+m=n−m+1  ⇒the coefficient of x^(n−m)  term is  therefore C_m ^(n−m+1)  which is the  answer we need.

$$\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{my}}\:\boldsymbol{{solution}} \\ $$$$ \\ $$$$\bigstar\:{stand}\:{for}\:{m}\:{selected}\:{students} \\ $$$$\diamondsuit\blacklozenge\:{stand}\:{for}\:{places}\:{for}\:{other}\:{students} \\ $$$$ \\ $$$$\diamondsuit\bigstar\blacklozenge\bigstar\blacklozenge\bigstar\blacklozenge\bigstar\blacklozenge...\blacklozenge\bigstar\blacklozenge\bigstar\lozenge \\ $$$$ \\ $$$$\lozenge\:{may}\:{be}\:{empty}\:{or}\:{occupied}\:{by}\:{any} \\ $$$${number}\:{of}\:{students} \\ $$$$\blacklozenge\:{must}\:{be}\:{occupied}\:{by}\:{at}\:{least}\:{one} \\ $$$${student} \\ $$$$ \\ $$$${we}\:{have}\:{two}\:\lozenge\:{places},\:{generating} \\ $$$${function}\:{of}\:{each}\:{one}\:{is} \\ $$$$\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$ \\ $$$${we}\:{have}\:\left({m}−\mathrm{1}\right)\:\blacklozenge\:{places},\:{generating} \\ $$$${function}\:{of}\:{each}\:{one}\:{is} \\ $$$${x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...=\frac{{x}}{\mathrm{1}−{x}} \\ $$$$ \\ $$$${the}\:{total}\:{number}\:{of}\:{students}\:{who} \\ $$$${occupy}\:{the}\:\lozenge\:{and}\:\blacklozenge\:{places}\:{is}\:\left({n}−{m}\right). \\ $$$$ \\ $$$${the}\:{number}\:{of}\:{ways}\:{to}\:{occupy}\:{these} \\ $$$${places}\:{is}\:{the}\:{coefficient}\:{of}\:{the}\:{x}^{{n}−{m}} \\ $$$${term}\:{of}\:{the}\:{following}\:{generating} \\ $$$${function} \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...\right)^{\mathrm{2}} \left({x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...\right)^{{m}−\mathrm{1}} \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)^{\mathrm{2}} \left(\frac{{x}}{\mathrm{1}−{x}}\right)^{{m}−\mathrm{1}} =\frac{{x}^{{m}−\mathrm{1}} }{\left(\mathrm{1}−{x}\right)^{{m}+\mathrm{1}} } \\ $$$$={x}^{{m}−\mathrm{1}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{{m}} ^{{k}+{m}} {x}^{{k}} \\ $$$${m}−\mathrm{1}+{k}={n}−{m}\:\Rightarrow{k}+{m}={n}−{m}+\mathrm{1} \\ $$$$\Rightarrow{the}\:{coefficient}\:{of}\:{x}^{{n}−{m}} \:{term}\:{is} \\ $$$${therefore}\:{C}_{{m}} ^{{n}−{m}+\mathrm{1}} \:{which}\:{is}\:{the} \\ $$$${answer}\:{we}\:{need}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com