Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 103756 by ajfour last updated on 17/Jul/20

Commented by ajfour last updated on 17/Jul/20

Find radius r of shown circle.

$${Find}\:{radius}\:{r}\:{of}\:{shown}\:{circle}. \\ $$

Answered by mr W last updated on 17/Jul/20

center of circle (h,r)    y=x^2   tan θ=y′=2x  P(p,p^2 )  p=h−r sin θ  p^2 =r+r cos θ  tan θ=2p  p=h−r ((2p)/(√(1+4p^2 )))  p^2 =r(1+ (1/(√(1+4p^2 ))))   { ((h=p(1+((2p^2 )/(1+(√(1+4p^2 ))))))),((r=(p^2 /(1+(1/(√(1+4p^2 ))))))) :}     ...(I)    y=(√x)  tan ϕ=y′=(1/(2(√x)))  Q(q^2 ,q)  q^2 =h−r sin ϕ  q=r+r cos ϕ  tan ϕ=(1/(2q))  q^2 =h−r (1/(√(1+4q^2 )))  q=r(1+((2q)/(√(1+4q^2 ))))   { ((h=q(q+(1/(2q+(√(1+4q^2 ))))))),((r=(q/(1+((2q)/(√(1+4q^2 ))))))) :}   ...(II)  intersection point of curve (I) & (II):  h≈1.4167  r≈0.56886

$${center}\:{of}\:{circle}\:\left({h},{r}\right) \\ $$$$ \\ $$$${y}={x}^{\mathrm{2}} \\ $$$$\mathrm{tan}\:\theta={y}'=\mathrm{2}{x} \\ $$$${P}\left({p},{p}^{\mathrm{2}} \right) \\ $$$${p}={h}−{r}\:\mathrm{sin}\:\theta \\ $$$${p}^{\mathrm{2}} ={r}+{r}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$${p}={h}−{r}\:\frac{\mathrm{2}{p}}{\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$${p}^{\mathrm{2}} ={r}\left(\mathrm{1}+\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}\right) \\ $$$$\begin{cases}{{h}={p}\left(\mathrm{1}+\frac{\mathrm{2}{p}^{\mathrm{2}} }{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}\right)}\\{{r}=\frac{{p}^{\mathrm{2}} }{\mathrm{1}+\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}}\end{cases}\:\:\:\:\:...\left({I}\right) \\ $$$$ \\ $$$${y}=\sqrt{{x}} \\ $$$$\mathrm{tan}\:\varphi={y}'=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}} \\ $$$${Q}\left({q}^{\mathrm{2}} ,{q}\right) \\ $$$${q}^{\mathrm{2}} ={h}−{r}\:\mathrm{sin}\:\varphi \\ $$$${q}={r}+{r}\:\mathrm{cos}\:\varphi \\ $$$$\mathrm{tan}\:\varphi=\frac{\mathrm{1}}{\mathrm{2}{q}} \\ $$$${q}^{\mathrm{2}} ={h}−{r}\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }} \\ $$$${q}={r}\left(\mathrm{1}+\frac{\mathrm{2}{q}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }}\right) \\ $$$$\begin{cases}{{h}={q}\left({q}+\frac{\mathrm{1}}{\mathrm{2}{q}+\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }}\right)}\\{{r}=\frac{{q}}{\mathrm{1}+\frac{\mathrm{2}{q}}{\sqrt{\mathrm{1}+\mathrm{4}{q}^{\mathrm{2}} }}}}\end{cases}\:\:\:...\left({II}\right) \\ $$$${intersection}\:{point}\:{of}\:{curve}\:\left({I}\right)\:\&\:\left({II}\right): \\ $$$${h}\approx\mathrm{1}.\mathrm{4167} \\ $$$${r}\approx\mathrm{0}.\mathrm{56886} \\ $$

Commented by mr W last updated on 17/Jul/20

Commented by mr W last updated on 17/Jul/20

Commented by ajfour last updated on 17/Jul/20

parametric way!  Anyway thanks  Sir,  i can barely think of any  other way out...

$${parametric}\:{way}!\:\:{Anyway}\:{thanks} \\ $$$${Sir},\:\:{i}\:{can}\:{barely}\:{think}\:{of}\:{any} \\ $$$${other}\:{way}\:{out}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com