Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 103773 by bemath last updated on 17/Jul/20

∫_c ((x^2 +2xy^2 )dx+(x^2 y^2 −1)dy)  where C is the boundary of  region define by y^2 = 4x and y  =1 ?

$$\int_{{c}} \left(\left({x}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{2}} \right){dx}+\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}\right){dy}\right) \\ $$$${where}\:{C}\:{is}\:{the}\:{boundary}\:{of} \\ $$$${region}\:{define}\:{by}\:{y}^{\mathrm{2}} =\:\mathrm{4}{x}\:{and}\:{y} \\ $$$$=\mathrm{1}\:? \\ $$

Answered by bramlex last updated on 17/Jul/20

note that C is a closed curve .  observe that y^2 =4x intersects  x=1 when y = ± 2  Green′s Theorem yields  ∫_c ((x^2 +2xy^2 )dx+(x^2 y^2 −1)dy)=  ∫_(−2) ^2  ∫_(y^2 /4) ^1 (2xy^2 −4xy) dxdy   =∫_(−2) ^2 {(x^2 y^2 −2x^2 y)}∣_(y^2 /4) ^1  dy  = 2∫_0 ^2 (y^2 −(y^6 /(16))) dy  [ even  function]  = [(2/3)y^3 −(y^7 /(112)) ]_9 ^2 = ((16)/3) −((128)/(112))  =((16)/3)−(8/7) = ((88)/(21))

$${note}\:{that}\:{C}\:{is}\:{a}\:{closed}\:{curve}\:. \\ $$$${observe}\:{that}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:{intersects} \\ $$$${x}=\mathrm{1}\:{when}\:{y}\:=\:\pm\:\mathrm{2} \\ $$$${Green}'{s}\:{Theorem}\:{yields} \\ $$$$\int_{{c}} \left(\left({x}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{2}} \right){dx}+\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}\right){dy}\right)= \\ $$$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\:\underset{{y}^{\mathrm{2}} /\mathrm{4}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{2}{xy}^{\mathrm{2}} −\mathrm{4}{xy}\right)\:{dxdy}\: \\ $$$$=\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left\{\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}\right)\right\}\mid_{{y}^{\mathrm{2}} /\mathrm{4}} ^{\mathrm{1}} \:{dy} \\ $$$$=\:\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\left({y}^{\mathrm{2}} −\frac{{y}^{\mathrm{6}} }{\mathrm{16}}\right)\:{dy}\:\:\left[\:{even}\right. \\ $$$$\left.{function}\right] \\ $$$$=\:\left[\frac{\mathrm{2}}{\mathrm{3}}{y}^{\mathrm{3}} −\frac{{y}^{\mathrm{7}} }{\mathrm{112}}\:\right]_{\mathrm{9}} ^{\mathrm{2}} =\:\frac{\mathrm{16}}{\mathrm{3}}\:−\frac{\mathrm{128}}{\mathrm{112}} \\ $$$$=\frac{\mathrm{16}}{\mathrm{3}}−\frac{\mathrm{8}}{\mathrm{7}}\:=\:\frac{\mathrm{88}}{\mathrm{21}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com