Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 103945 by bobhans last updated on 18/Jul/20

a cube ABCD.EFGH with length side  4 cm. Given point P is midpoint EF.  find the distance of line AP to line  HB.

$${a}\:{cube}\:{ABCD}.{EFGH}\:{with}\:{length}\:{side} \\ $$$$\mathrm{4}\:{cm}.\:{Given}\:{point}\:{P}\:{is}\:{midpoint}\:{EF}. \\ $$$${find}\:{the}\:{distance}\:{of}\:{line}\:{AP}\:{to}\:{line} \\ $$$${HB}.\: \\ $$

Answered by bramlex last updated on 18/Jul/20

let : ax+by+cz = −1 be a  equation of plane HBP ′ where  BP ′ parallel to AP.   coordinates A(4,0,0) ; B(4,4,0)  ; P ′(4,6,4) and H(0,0,4)  (i)substitute B⇒4a+4b = −1  (ii) substitute H⇒4c = −1⇒c =−(1/4)  (iii) substitute P  ′⇒4a+6b+4c=−1⇒4a+6b = 0  substract (i) &(iii)   we get 2b = 1⇒b=(1/2) & a = −(3/4)  so eq of plane HBP ′ ⇒−(3/4)x+(1/2)y−(1/4)z+1=0  or −3x+2y−z+4 = 0  so the distance we desired is ((∣−12+4∣)/(√(9+4+1)))  = (8/(√(14))) = ((4(√(14)))/7) cm. ■

$${let}\::\:{ax}+{by}+{cz}\:=\:−\mathrm{1}\:{be}\:{a} \\ $$$${equation}\:{of}\:{plane}\:{HBP}\:'\:{where} \\ $$$${BP}\:'\:{parallel}\:{to}\:{AP}.\: \\ $$$${coordinates}\:{A}\left(\mathrm{4},\mathrm{0},\mathrm{0}\right)\:;\:{B}\left(\mathrm{4},\mathrm{4},\mathrm{0}\right) \\ $$$$;\:{P}\:'\left(\mathrm{4},\mathrm{6},\mathrm{4}\right)\:{and}\:{H}\left(\mathrm{0},\mathrm{0},\mathrm{4}\right) \\ $$$$\left({i}\right){substitute}\:{B}\Rightarrow\mathrm{4}{a}+\mathrm{4}{b}\:=\:−\mathrm{1} \\ $$$$\left({ii}\right)\:{substitute}\:{H}\Rightarrow\mathrm{4}{c}\:=\:−\mathrm{1}\Rightarrow{c}\:=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({iii}\right)\:{substitute}\:{P} \\ $$$$'\Rightarrow\mathrm{4}{a}+\mathrm{6}{b}+\mathrm{4}{c}=−\mathrm{1}\Rightarrow\mathrm{4}{a}+\mathrm{6}{b}\:=\:\mathrm{0} \\ $$$${substract}\:\left({i}\right)\:\&\left({iii}\right)\: \\ $$$${we}\:{get}\:\mathrm{2}{b}\:=\:\mathrm{1}\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{2}}\:\&\:{a}\:=\:−\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${so}\:{eq}\:{of}\:{plane}\:{HBP}\:'\:\Rightarrow−\frac{\mathrm{3}}{\mathrm{4}}{x}+\frac{\mathrm{1}}{\mathrm{2}}{y}−\frac{\mathrm{1}}{\mathrm{4}}{z}+\mathrm{1}=\mathrm{0} \\ $$$${or}\:−\mathrm{3}{x}+\mathrm{2}{y}−{z}+\mathrm{4}\:=\:\mathrm{0} \\ $$$${so}\:{the}\:{distance}\:{we}\:{desired}\:{is}\:\frac{\mid−\mathrm{12}+\mathrm{4}\mid}{\sqrt{\mathrm{9}+\mathrm{4}+\mathrm{1}}} \\ $$$$=\:\frac{\mathrm{8}}{\sqrt{\mathrm{14}}}\:=\:\frac{\mathrm{4}\sqrt{\mathrm{14}}}{\mathrm{7}}\:{cm}.\:\blacksquare\: \\ $$

Commented by bramlex last updated on 18/Jul/20

Commented by bobhans last updated on 18/Jul/20

waw...nice and cooll

$${waw}...{nice}\:{and}\:{cooll} \\ $$

Answered by mr W last updated on 18/Jul/20

Commented by mr W last updated on 18/Jul/20

A(4,0,4)  P(4,2,0)  H(0,0,0)  B(4,4,4)  eqn. of AP=(4,0,4)+λ(0,1,−2)  eqn. of HB=(0,0,0)+μ(1,1,1)  a point on AP is S(4,λ,4−2λ)  a point on HB is T(μ,μ,μ)  let Φ=ST^2   Φ=(4−μ)^2 +(λ−μ)^2 +(4−2λ−μ)^2   (∂Φ/∂s)=2(λ−μ)+4(2λ+μ−4)=0  ⇒5λ+μ=8   ...(i)  (∂Φ/∂t)=−2(4−μ)−2(λ−μ)+2(2λ+μ−4)=0  ⇒λ+3μ=8   ...(ii)  ⇒λ=(8/7)  ⇒μ=((16)/7)  Φ_(min) =(4−((16)/7))^2 +((8/7)−((16)/7))^2 +(4−((16)/7)−((16)/7))^2 =((224)/(49))  min. distance from AP to HB is  ST_(min) =(√Φ_(min) )=(√((224)/(49)))=((4(√(14)))/7)

$${A}\left(\mathrm{4},\mathrm{0},\mathrm{4}\right) \\ $$$${P}\left(\mathrm{4},\mathrm{2},\mathrm{0}\right) \\ $$$${H}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$$${B}\left(\mathrm{4},\mathrm{4},\mathrm{4}\right) \\ $$$${eqn}.\:{of}\:{AP}=\left(\mathrm{4},\mathrm{0},\mathrm{4}\right)+\lambda\left(\mathrm{0},\mathrm{1},−\mathrm{2}\right) \\ $$$${eqn}.\:{of}\:{HB}=\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)+\mu\left(\mathrm{1},\mathrm{1},\mathrm{1}\right) \\ $$$${a}\:{point}\:{on}\:{AP}\:{is}\:{S}\left(\mathrm{4},\lambda,\mathrm{4}−\mathrm{2}\lambda\right) \\ $$$${a}\:{point}\:{on}\:{HB}\:{is}\:{T}\left(\mu,\mu,\mu\right) \\ $$$${let}\:\Phi={ST}^{\mathrm{2}} \\ $$$$\Phi=\left(\mathrm{4}−\mu\right)^{\mathrm{2}} +\left(\lambda−\mu\right)^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{2}\lambda−\mu\right)^{\mathrm{2}} \\ $$$$\frac{\partial\Phi}{\partial{s}}=\mathrm{2}\left(\lambda−\mu\right)+\mathrm{4}\left(\mathrm{2}\lambda+\mu−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}\lambda+\mu=\mathrm{8}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial\Phi}{\partial{t}}=−\mathrm{2}\left(\mathrm{4}−\mu\right)−\mathrm{2}\left(\lambda−\mu\right)+\mathrm{2}\left(\mathrm{2}\lambda+\mu−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda+\mathrm{3}\mu=\mathrm{8}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\lambda=\frac{\mathrm{8}}{\mathrm{7}} \\ $$$$\Rightarrow\mu=\frac{\mathrm{16}}{\mathrm{7}} \\ $$$$\Phi_{{min}} =\left(\mathrm{4}−\frac{\mathrm{16}}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{8}}{\mathrm{7}}−\frac{\mathrm{16}}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\mathrm{4}−\frac{\mathrm{16}}{\mathrm{7}}−\frac{\mathrm{16}}{\mathrm{7}}\right)^{\mathrm{2}} =\frac{\mathrm{224}}{\mathrm{49}} \\ $$$${min}.\:{distance}\:{from}\:{AP}\:{to}\:{HB}\:{is} \\ $$$${ST}_{{min}} =\sqrt{\Phi_{{min}} }=\sqrt{\frac{\mathrm{224}}{\mathrm{49}}}=\frac{\mathrm{4}\sqrt{\mathrm{14}}}{\mathrm{7}} \\ $$

Commented by bobhans last updated on 18/Jul/20

what method it is sir?

$${what}\:{method}\:{it}\:{is}\:{sir}?\: \\ $$

Commented by bobhans last updated on 18/Jul/20

where become s(0,1,−2) sir

$${where}\:{become}\:{s}\left(\mathrm{0},\mathrm{1},−\mathrm{2}\right)\:{sir} \\ $$

Commented by mr W last updated on 18/Jul/20

AP^(→) =(4−4,2−0,0−4)=(0,2,−4) or  (0,1,−2)

$$\overset{\rightarrow} {{AP}}=\left(\mathrm{4}−\mathrm{4},\mathrm{2}−\mathrm{0},\mathrm{0}−\mathrm{4}\right)=\left(\mathrm{0},\mathrm{2},−\mathrm{4}\right)\:{or} \\ $$$$\left(\mathrm{0},\mathrm{1},−\mathrm{2}\right) \\ $$

Commented by bramlex last updated on 18/Jul/20

waw...great your method sir.

$${waw}...{great}\:{your}\:{method}\:{sir}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com