Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 10397 by amir last updated on 07/Feb/17

Commented by mrW1 last updated on 07/Feb/17

I think there is no maximum for the  premetre of the trangle, but a minimum.    Due to the symmetry it can be seen  that the minimum premetre occurs  when the tangent line tangents the  curve at point (1, 1) or (−1,−1).

$$\mathrm{I}\:\mathrm{think}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{maximum}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{premetre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trangle},\:\mathrm{but}\:\mathrm{a}\:\mathrm{minimum}. \\ $$$$ \\ $$$$\mathrm{Due}\:\mathrm{to}\:\mathrm{the}\:\mathrm{symmetry}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{seen} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{premetre}\:\mathrm{occurs} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{tangents}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{at}\:\mathrm{point}\:\left(\mathrm{1},\:\mathrm{1}\right)\:\mathrm{or}\:\left(−\mathrm{1},−\mathrm{1}\right). \\ $$

Answered by mrW1 last updated on 07/Feb/17

here the analytic solution:    let B(t,s) a point on the curve xy=1.  y=(1/x)  s=(1/t)  y′(x)=−(1/x^2 )  the slope of the tangent line at B is  m_t =y′(t)=−(1/t^2 )  the equation of the tangent line is  y−s=m_t (x−t) or  y−(1/t)=−(1/t^2 )(x−t)  the intersection points of tangent  line with coordinate axes are  C(0,c) and D(d,0).  c−(1/t)=−(1/t^2 )(0−t)  ⇒c=(2/t)  0−(1/t)=−(1/t^2 )(d−t)  ⇒d=2t    the premetre of triangle ΔOCD is  P=OD+OC+CD=2t+(2/t)+(√((2t)^2 +((2/t))^2 ))  =2[t+(1/t)+(√(t^2 +(1/t^2 )))]=2L  L=t+(1/t)+(√(t^2 +(1/t^2 )))  (dL/dt)=1−(1/t^2 )+(1/(2(√(t^2 +(1/t^2 )))))×(2t−(2/t^3 ))  =1−(1/t^2 )+(1/( (√(1+(1/t^4 )))))×(1−(1/t^4 ))  =(1−(1/t^2 ))[1+((1+(1/t^2 ))/( (√(1+(1/t^4 )))))]  (dP/dt)=0  ⇒ (dL/dt)=0 ⇒ 1−(1/t^2 )=0  ⇒t^2 =1  ⇒t=±1  i.e. the premetre P has minimum at  (1,1) or (−1,−1)    with t=1 we get:  c=(2/t)=2  d=2t=2  P_(min) =2+2+(√(2^2 +2^2 ))=4+2(√2)

$${here}\:{the}\:{analytic}\:{solution}: \\ $$$$ \\ $$$${let}\:{B}\left({t},{s}\right)\:{a}\:{point}\:{on}\:{the}\:{curve}\:{xy}=\mathrm{1}. \\ $$$${y}=\frac{\mathrm{1}}{{x}} \\ $$$${s}=\frac{\mathrm{1}}{{t}} \\ $$$${y}'\left({x}\right)=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${the}\:{slope}\:{of}\:{the}\:{tangent}\:{line}\:{at}\:{B}\:{is} \\ $$$${m}_{{t}} ={y}'\left({t}\right)=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${the}\:{equation}\:{of}\:{the}\:{tangent}\:{line}\:{is} \\ $$$${y}−{s}={m}_{{t}} \left({x}−{t}\right)\:{or} \\ $$$${y}−\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left({x}−{t}\right) \\ $$$${the}\:{intersection}\:{points}\:{of}\:{tangent} \\ $$$${line}\:{with}\:{coordinate}\:{axes}\:{are} \\ $$$${C}\left(\mathrm{0},{c}\right)\:{and}\:{D}\left({d},\mathrm{0}\right). \\ $$$${c}−\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left(\mathrm{0}−{t}\right) \\ $$$$\Rightarrow{c}=\frac{\mathrm{2}}{{t}} \\ $$$$\mathrm{0}−\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left({d}−{t}\right) \\ $$$$\Rightarrow{d}=\mathrm{2}{t} \\ $$$$ \\ $$$${the}\:{premetre}\:{of}\:{triangle}\:\Delta{OCD}\:{is} \\ $$$${P}={OD}+{OC}+{CD}=\mathrm{2}{t}+\frac{\mathrm{2}}{{t}}+\sqrt{\left(\mathrm{2}{t}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{{t}}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{2}\left[{t}+\frac{\mathrm{1}}{{t}}+\sqrt{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}\right]=\mathrm{2}{L} \\ $$$${L}={t}+\frac{\mathrm{1}}{{t}}+\sqrt{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }} \\ $$$$\frac{{dL}}{{dt}}=\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}}×\left(\mathrm{2}{t}−\frac{\mathrm{2}}{{t}^{\mathrm{3}} }\right) \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{4}} }}}×\left(\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{4}} }\right) \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)\left[\mathrm{1}+\frac{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{4}} }}}\right] \\ $$$$\frac{{dP}}{{dt}}=\mathrm{0} \\ $$$$\Rightarrow\:\frac{{dL}}{{dt}}=\mathrm{0}\:\Rightarrow\:\mathrm{1}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{t}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{t}=\pm\mathrm{1} \\ $$$${i}.{e}.\:{the}\:{premetre}\:{P}\:{has}\:{minimum}\:{at} \\ $$$$\left(\mathrm{1},\mathrm{1}\right)\:{or}\:\left(−\mathrm{1},−\mathrm{1}\right) \\ $$$$ \\ $$$${with}\:{t}=\mathrm{1}\:{we}\:{get}: \\ $$$${c}=\frac{\mathrm{2}}{{t}}=\mathrm{2} \\ $$$${d}=\mathrm{2}{t}=\mathrm{2} \\ $$$${P}_{{min}} =\mathrm{2}+\mathrm{2}+\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Commented by amir last updated on 07/Feb/17

thank you so much dear mrW1.  your commenet is true.it is a min for  premetre.  but? is there any  max for premeter?

$${thank}\:{you}\:{so}\:{much}\:{dear}\:{mrW}\mathrm{1}. \\ $$$${your}\:{commenet}\:{is}\:{true}.{it}\:{is}\:{a}\:\boldsymbol{{min}}\:{for} \\ $$$${premetre}. \\ $$$${but}?\:{is}\:{there}\:{any}\:\:\boldsymbol{{max}}\:{for}\:{premeter}? \\ $$

Commented by mrW1 last updated on 07/Feb/17

no, there is no max for the premetre.  as t→0 or t→∞, P→∞

$${no},\:{there}\:{is}\:{no}\:{max}\:{for}\:{the}\:{premetre}. \\ $$$${as}\:{t}\rightarrow\mathrm{0}\:{or}\:{t}\rightarrow\infty,\:{P}\rightarrow\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com