Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 103986 by ajfour last updated on 18/Jul/20

Commented by ajfour last updated on 18/Jul/20

If both coloured regions have equal  area, find x_A , x_B  .

$${If}\:{both}\:{coloured}\:{regions}\:{have}\:{equal} \\ $$$${area},\:{find}\:{x}_{{A}} ,\:{x}_{{B}} \:. \\ $$

Answered by mr W last updated on 19/Jul/20

B(−q,q^2 )  A(p,p^2 )  −(1/(tan θ))=−2q ⇒tan θ=(1/(2q))  eqn. of BA:  y=(1/(2q))(x+q)+q^2   p^2 =(1/(2q))(p+q)+q^2   2qp^2 −p−q(2q^2 +1)=0  ⇒p=q+(1/(2q))  −(1/(tan ϕ))=2p=2q+(1/q)=((2q^2 +1)/q)  ⇒tan ϕ=−(q/(2q^2 +1))  eqn. of AC:  y=−(q/(2q^2 +1))(x−p)+p^2   y=−(q/(2q^2 +1))(x−q−(1/(2q)))+(q+(1/(2q)))^2   area under AC=A_1   area under BA=A_2   x^2 +(q/(2q^2 +1))x−((q/(2q^2 +1))+q+(1/(2q)))(q+(1/(2q)))=0  Δ=((q/(2q^2 +1)))^2 +4((q/(2q^2 +1))+q+(1/(2q)))(q+(1/(2q)))  =((q/(2q^2 +1))+2q+(1/q))^2   6A_1 =(Δ)^(3/2) =((q/(2q^2 +1))+2q+(1/q))^3     x^2 −(1/(2q))x−((1/2)+q^2 )=0  Δ=(1/(4q^2 ))+2+4q^2 =((1/(2q))+2q)^2   6A_2 =(Δ)^(3/2) =((1/(2q))+2q)^3   A_1 =2A_2   ⇒(q/(2q^2 +1))+2q+(1/q)=(2)^(1/3) ((1/(2q))+2q)  ⇒8((2)^(1/3) −1)q^4 −2(5−3(2)^(1/3) )q^2 −(2−(2)^(1/3) )=0  ⇒q=(√((2−(2)^(1/3) )/(2((2)^(1/3) −1))))≈1.193173

$${B}\left(−{q},{q}^{\mathrm{2}} \right) \\ $$$${A}\left({p},{p}^{\mathrm{2}} \right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=−\mathrm{2}{q}\:\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{q}} \\ $$$${eqn}.\:{of}\:{BA}: \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}{q}}\left({x}+{q}\right)+{q}^{\mathrm{2}} \\ $$$${p}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}{q}}\left({p}+{q}\right)+{q}^{\mathrm{2}} \\ $$$$\mathrm{2}{qp}^{\mathrm{2}} −{p}−{q}\left(\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}={q}+\frac{\mathrm{1}}{\mathrm{2}{q}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{tan}\:\varphi}=\mathrm{2}{p}=\mathrm{2}{q}+\frac{\mathrm{1}}{{q}}=\frac{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}{{q}} \\ $$$$\Rightarrow\mathrm{tan}\:\varphi=−\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}} \\ $$$${eqn}.\:{of}\:{AC}: \\ $$$${y}=−\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}\left({x}−{p}\right)+{p}^{\mathrm{2}} \\ $$$${y}=−\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}\left({x}−{q}−\frac{\mathrm{1}}{\mathrm{2}{q}}\right)+\left({q}+\frac{\mathrm{1}}{\mathrm{2}{q}}\right)^{\mathrm{2}} \\ $$$${area}\:{under}\:{AC}={A}_{\mathrm{1}} \\ $$$${area}\:{under}\:{BA}={A}_{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}{x}−\left(\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}+{q}+\frac{\mathrm{1}}{\mathrm{2}{q}}\right)\left({q}+\frac{\mathrm{1}}{\mathrm{2}{q}}\right)=\mathrm{0} \\ $$$$\Delta=\left(\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{4}\left(\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}+{q}+\frac{\mathrm{1}}{\mathrm{2}{q}}\right)\left({q}+\frac{\mathrm{1}}{\mathrm{2}{q}}\right) \\ $$$$=\left(\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}{q}+\frac{\mathrm{1}}{{q}}\right)^{\mathrm{2}} \\ $$$$\mathrm{6}{A}_{\mathrm{1}} =\left(\Delta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\left(\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}{q}+\frac{\mathrm{1}}{{q}}\right)^{\mathrm{3}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}{q}}{x}−\left(\frac{\mathrm{1}}{\mathrm{2}}+{q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{4}{q}^{\mathrm{2}} }+\mathrm{2}+\mathrm{4}{q}^{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}{q}}+\mathrm{2}{q}\right)^{\mathrm{2}} \\ $$$$\mathrm{6}{A}_{\mathrm{2}} =\left(\Delta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\left(\frac{\mathrm{1}}{\mathrm{2}{q}}+\mathrm{2}{q}\right)^{\mathrm{3}} \\ $$$${A}_{\mathrm{1}} =\mathrm{2}{A}_{\mathrm{2}} \\ $$$$\Rightarrow\frac{{q}}{\mathrm{2}{q}^{\mathrm{2}} +\mathrm{1}}+\mathrm{2}{q}+\frac{\mathrm{1}}{{q}}=\sqrt[{\mathrm{3}}]{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}{q}}+\mathrm{2}{q}\right) \\ $$$$\Rightarrow\mathrm{8}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}\right){q}^{\mathrm{4}} −\mathrm{2}\left(\mathrm{5}−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{2}}\right){q}^{\mathrm{2}} −\left(\mathrm{2}−\sqrt[{\mathrm{3}}]{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Rightarrow{q}=\sqrt{\frac{\mathrm{2}−\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2}\left(\sqrt[{\mathrm{3}}]{\mathrm{2}}−\mathrm{1}\right)}}\approx\mathrm{1}.\mathrm{193173} \\ $$

Commented by mr W last updated on 18/Jul/20

Commented by ajfour last updated on 19/Jul/20

Fabulous Sir, let me some time  comprehending it entirely..

$${Fabulous}\:{Sir},\:{let}\:{me}\:{some}\:{time} \\ $$$${comprehending}\:{it}\:{entirely}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com