Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 104265 by mohammad17 last updated on 20/Jul/20

(dy/dx)−y=sinx

$$\frac{{dy}}{{dx}}−{y}={sinx} \\ $$

Answered by bemath last updated on 20/Jul/20

Homogenous solution   λ−1=0 ⇒λ=1 ⇒y_h  = C_1 e^x   particular solution   y_p =Acos x+Bsin x  y_p ′=−Asin x+Bcos x  comparing coefficient   (−Asin  x+Bcos  x)−(Acos x  + Bsin x) = sin x  ⇒(B−A)cos x+(−B−A)sin x  = sin x   B=A ∧ −B−A=1 ⇒A=−(1/2)  y_p  = −(1/2)cos x−(1/2)sin x  general solution   ∴y = Ce^x −(1/2)(cos x+sin x)

$${Homogenous}\:{solution}\: \\ $$$$\lambda−\mathrm{1}=\mathrm{0}\:\Rightarrow\lambda=\mathrm{1}\:\Rightarrow{y}_{{h}} \:=\:{C}_{\mathrm{1}} {e}^{{x}} \\ $$$${particular}\:{solution}\: \\ $$$${y}_{{p}} ={A}\mathrm{cos}\:{x}+{B}\mathrm{sin}\:{x} \\ $$$${y}_{{p}} '=−{A}\mathrm{sin}\:{x}+{B}\mathrm{cos}\:{x} \\ $$$${comparing}\:{coefficient}\: \\ $$$$\left(−{A}\mathrm{sin}\:\:{x}+{B}\mathrm{cos}\:\:{x}\right)−\left({A}\mathrm{cos}\:{x}\right. \\ $$$$\left.+\:{B}\mathrm{sin}\:{x}\right)\:=\:\mathrm{sin}\:{x} \\ $$$$\Rightarrow\left({B}−{A}\right)\mathrm{cos}\:{x}+\left(−{B}−{A}\right)\mathrm{sin}\:{x} \\ $$$$=\:\mathrm{sin}\:{x}\: \\ $$$${B}={A}\:\wedge\:−{B}−{A}=\mathrm{1}\:\Rightarrow{A}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${y}_{{p}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:{x} \\ $$$${general}\:{solution}\: \\ $$$$\therefore{y}\:=\:{Ce}^{{x}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right) \\ $$

Commented by mohammad17 last updated on 20/Jul/20

    sory sir how this i think this y=((∫e^(−x) sinxdx)/e^(−x) )

$$ \\ $$$$ \\ $$$${sory}\:{sir}\:{how}\:{this}\:{i}\:{think}\:{this}\:{y}=\frac{\int{e}^{−{x}} {sinxdx}}{{e}^{−{x}} } \\ $$

Commented by mohammad17 last updated on 20/Jul/20

Commented by mohammad17 last updated on 20/Jul/20

is the solution its right?

$${is}\:{the}\:{solution}\:{its}\:{right}? \\ $$

Commented by bemath last updated on 20/Jul/20

yes sir

$${yes}\:{sir} \\ $$

Commented by mohammad17 last updated on 20/Jul/20

thank you

$${thank}\:{you} \\ $$

Answered by Dwaipayan Shikari last updated on 20/Jul/20

IF=e^(∫−1dx) =e^(−x)   y.e^(−x) =∫e^(−x) sinxdx=I  ye^(−x) =−sinxe^(−x) +∫e^(−x) cosxdx  ye^(−x) =−sinx e^(−x) −cosx e^(−x) −∫sinx e^(−x) =I  ye^(−x) =−(1/2)e^(−x) (sinx+cosx)+C  y=((−1)/2)(sinx+cosx)+Ce^x

$$\mathrm{IF}=\mathrm{e}^{\int−\mathrm{1dx}} =\mathrm{e}^{−\mathrm{x}} \\ $$$$\mathrm{y}.\mathrm{e}^{−\mathrm{x}} =\int\mathrm{e}^{−\mathrm{x}} \mathrm{sinxdx}=\mathrm{I} \\ $$$$\mathrm{ye}^{−\mathrm{x}} =−\mathrm{sinxe}^{−\mathrm{x}} +\int\mathrm{e}^{−\mathrm{x}} \mathrm{cosxdx} \\ $$$$\mathrm{ye}^{−\mathrm{x}} =−\mathrm{sinx}\:\mathrm{e}^{−\mathrm{x}} −\mathrm{cosx}\:\mathrm{e}^{−\mathrm{x}} −\int\mathrm{sinx}\:\mathrm{e}^{−\mathrm{x}} =\mathrm{I} \\ $$$$\mathrm{ye}^{−\mathrm{x}} =−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{x}} \left(\mathrm{sinx}+\mathrm{cosx}\right)+\mathrm{C} \\ $$$$\mathrm{y}=\frac{−\mathrm{1}}{\mathrm{2}}\left(\mathrm{sinx}+\mathrm{cosx}\right)+\mathrm{Ce}^{\mathrm{x}} \\ $$$$ \\ $$

Answered by Ar Brandon last updated on 20/Jul/20

{(dy/dx)−y=sinx}∙e^(−x)   ⇒e^(−x) (dy/dx)−ye^(−x) =e^(−x) sinx  ⇒((d(ye^(−x) ))/dx)=e^(−x) sinx  ⇒ye^(−x) =∫e^(−x) sinxdx                 =sinx∫e^(−x) dx−∫{((dsinx)/dx)∫e^(−x) dx}dx                 =−e^(−x) sinx+∫e^(−x) cosxdx                 =−e^(−x) sinx+{cosx∫e^(−x) dx−∫{((dcosx)/dx)∫e^(−x) dx}dx}                 =−e^(−x) sinx−e^(−x) cosx−∫e^(−x) sinxdx                 =((−(sinx+cosx)e^(−x) )/2)+C  ⇒y=−(((sinx+cosx))/2)+Ce^x

$$\left\{\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{y}=\mathrm{sinx}\right\}\centerdot\mathrm{e}^{−\mathrm{x}} \\ $$$$\Rightarrow\mathrm{e}^{−\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{ye}^{−\mathrm{x}} =\mathrm{e}^{−\mathrm{x}} \mathrm{sinx} \\ $$$$\Rightarrow\frac{\mathrm{d}\left(\mathrm{ye}^{−\mathrm{x}} \right)}{\mathrm{dx}}=\mathrm{e}^{−\mathrm{x}} \mathrm{sinx} \\ $$$$\Rightarrow\mathrm{ye}^{−\mathrm{x}} =\int\mathrm{e}^{−\mathrm{x}} \mathrm{sinxdx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{sinx}\int\mathrm{e}^{−\mathrm{x}} \mathrm{dx}−\int\left\{\frac{\mathrm{dsinx}}{\mathrm{dx}}\int\mathrm{e}^{−\mathrm{x}} \mathrm{dx}\right\}\mathrm{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{e}^{−\mathrm{x}} \mathrm{sinx}+\int\mathrm{e}^{−\mathrm{x}} \mathrm{cosxdx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{e}^{−\mathrm{x}} \mathrm{sinx}+\left\{\mathrm{cosx}\int\mathrm{e}^{−\mathrm{x}} \mathrm{dx}−\int\left\{\frac{\mathrm{dcosx}}{\mathrm{dx}}\int\mathrm{e}^{−\mathrm{x}} \mathrm{dx}\right\}\mathrm{dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{e}^{−\mathrm{x}} \mathrm{sinx}−\mathrm{e}^{−\mathrm{x}} \mathrm{cosx}−\int\mathrm{e}^{−\mathrm{x}} \mathrm{sinxdx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{−\left(\mathrm{sinx}+\mathrm{cosx}\right)\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}}+\mathcal{C} \\ $$$$\Rightarrow\mathrm{y}=−\frac{\left(\mathrm{sinx}+\mathrm{cosx}\right)}{\mathrm{2}}+\mathcal{C}\mathrm{e}^{\mathrm{x}} \\ $$

Answered by mathmax by abdo last updated on 20/Jul/20

y^′ −y =sinx  h→r−1 =0 ⇒r =1 ⇒y_h =Ke^x   lagrange method →y^′  =k^′  e^x  +ke^x   e⇒k^′  e^x  +ke^x −ke^x  =sinx ⇒k^′  =e^(−x) sinx ⇒k =∫ e^(−x) sinx dx  =Im(∫ e^(−x+ix) dx) =Im(∫ e^((−1+i)x) dx)  but   ∫ e^((−1+i)x) dx =(1/(−1+i)) e^((−1+i)x)  +c =−(1/(1−i)) e^(−x) (cosx +sinx)  =−((1+i)/2) e^(−x) {cosx +isinx} =−(e^(−x) /2){cosx+isinx+icosx−sinx} ⇒  Im(∫...) =−(e^(−x) /2){cosx +sinx} ⇒the general solution is  (−(e^(−x) /2){cosx +sinx} +c)e^x  =−(1/2)(cosx +sinx) +ce^x

$$\mathrm{y}^{'} −\mathrm{y}\:=\mathrm{sinx} \\ $$$$\mathrm{h}\rightarrow\mathrm{r}−\mathrm{1}\:=\mathrm{0}\:\Rightarrow\mathrm{r}\:=\mathrm{1}\:\Rightarrow\mathrm{y}_{\mathrm{h}} =\mathrm{Ke}^{\mathrm{x}} \\ $$$$\mathrm{lagrange}\:\mathrm{method}\:\rightarrow\mathrm{y}^{'} \:=\mathrm{k}^{'} \:\mathrm{e}^{\mathrm{x}} \:+\mathrm{ke}^{\mathrm{x}} \\ $$$$\mathrm{e}\Rightarrow\mathrm{k}^{'} \:\mathrm{e}^{\mathrm{x}} \:+\mathrm{ke}^{\mathrm{x}} −\mathrm{ke}^{\mathrm{x}} \:=\mathrm{sinx}\:\Rightarrow\mathrm{k}^{'} \:=\mathrm{e}^{−\mathrm{x}} \mathrm{sinx}\:\Rightarrow\mathrm{k}\:=\int\:\mathrm{e}^{−\mathrm{x}} \mathrm{sinx}\:\mathrm{dx} \\ $$$$=\mathrm{Im}\left(\int\:\mathrm{e}^{−\mathrm{x}+\mathrm{ix}} \mathrm{dx}\right)\:=\mathrm{Im}\left(\int\:\mathrm{e}^{\left(−\mathrm{1}+\mathrm{i}\right)\mathrm{x}} \mathrm{dx}\right)\:\:\mathrm{but}\: \\ $$$$\int\:\mathrm{e}^{\left(−\mathrm{1}+\mathrm{i}\right)\mathrm{x}} \mathrm{dx}\:=\frac{\mathrm{1}}{−\mathrm{1}+\mathrm{i}}\:\mathrm{e}^{\left(−\mathrm{1}+\mathrm{i}\right)\mathrm{x}} \:+\mathrm{c}\:=−\frac{\mathrm{1}}{\mathrm{1}−\mathrm{i}}\:\mathrm{e}^{−\mathrm{x}} \left(\mathrm{cosx}\:+\mathrm{sinx}\right) \\ $$$$=−\frac{\mathrm{1}+\mathrm{i}}{\mathrm{2}}\:\mathrm{e}^{−\mathrm{x}} \left\{\mathrm{cosx}\:+\mathrm{isinx}\right\}\:=−\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}}\left\{\mathrm{cosx}+\mathrm{isinx}+\mathrm{icosx}−\mathrm{sinx}\right\}\:\Rightarrow \\ $$$$\mathrm{Im}\left(\int...\right)\:=−\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}}\left\{\mathrm{cosx}\:+\mathrm{sinx}\right\}\:\Rightarrow\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\left(−\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}}\left\{\mathrm{cosx}\:+\mathrm{sinx}\right\}\:+\mathrm{c}\right)\mathrm{e}^{\mathrm{x}} \:=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)\:+\mathrm{ce}^{\mathrm{x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com