Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 104281 by ajfour last updated on 20/Jul/20

Commented by ajfour last updated on 20/Jul/20

How far (s=?) can the  hemisphere slide if a block of  mass m placed atop it is given a  gentle tap towards left.  Assume no friction between block  and hemisphere, but friction  coefficient 𝛍 between ground and  hemisphere (solid).  (Also assume that hemisphere  starts sliding before block breaks  contact with the hemisphere).

$${How}\:{far}\:\left({s}=?\right)\:{can}\:{the} \\ $$$${hemisphere}\:{slide}\:{if}\:{a}\:{block}\:{of} \\ $$$${mass}\:{m}\:{placed}\:{atop}\:{it}\:{is}\:{given}\:{a} \\ $$$${gentle}\:{tap}\:{towards}\:{left}. \\ $$$${Assume}\:{no}\:{friction}\:{between}\:{block} \\ $$$${and}\:{hemisphere},\:{but}\:{friction} \\ $$$${coefficient}\:\boldsymbol{\mu}\:{between}\:{ground}\:{and} \\ $$$${hemisphere}\:\left({solid}\right). \\ $$$$\left({Also}\:{assume}\:{that}\:{hemisphere}\right. \\ $$$${starts}\:{sliding}\:{before}\:{block}\:{breaks} \\ $$$$\left.{contact}\:{with}\:{the}\:{hemisphere}\right). \\ $$

Answered by mr W last updated on 20/Jul/20

Commented by mr W last updated on 21/Jul/20

ω=(dθ/dt)  v=ωr  mω^2 r=mg cos θ−N−mA sin θ  ⇒N=m(g cos θ−A sin θ−ω^2 r)  R=Mg+N cos θ  N sin θ−μR=MA  N sin θ−μ(Mg+N cos θ)=MA  N(sin θ−μ cos θ)−μMg=MA  (m/M)(g cos θ−ω^2 r−A sin θ)(sin θ−μ cos θ)−μg=A  ⇒(m/M)(g cos θ−ω^2 r)(sin θ−μ cos θ)−μg=A[1+sin θ(sin θ−μ cos θ)]  mg sin θ+mA cos θ=mr(dω/dt)  (dω/dt)=ω(dω/dθ)  ⇒A=(rω(dω/dθ)−g sin θ)(1/(cos θ))  ⇒(m/M)(cos θ−(r/g)ω^2 )(sin θ−μ cos θ)−μ     =((r/g)ω(dω/dθ)−sin θ)((1+sin θ(sin θ−μ cos θ))/(cos θ))  ⇒ω=f(θ).....not really possible to solve  ......

$$\omega=\frac{{d}\theta}{{dt}} \\ $$$${v}=\omega{r} \\ $$$${m}\omega^{\mathrm{2}} {r}={mg}\:\mathrm{cos}\:\theta−{N}−{mA}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{N}={m}\left({g}\:\mathrm{cos}\:\theta−{A}\:\mathrm{sin}\:\theta−\omega^{\mathrm{2}} {r}\right) \\ $$$${R}={Mg}+{N}\:\mathrm{cos}\:\theta \\ $$$${N}\:\mathrm{sin}\:\theta−\mu{R}={MA} \\ $$$${N}\:\mathrm{sin}\:\theta−\mu\left({Mg}+{N}\:\mathrm{cos}\:\theta\right)={MA} \\ $$$${N}\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu{Mg}={MA} \\ $$$$\frac{{m}}{{M}}\left({g}\:\mathrm{cos}\:\theta−\omega^{\mathrm{2}} {r}−{A}\:\mathrm{sin}\:\theta\right)\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu{g}={A} \\ $$$$\Rightarrow\frac{{m}}{{M}}\left({g}\:\mathrm{cos}\:\theta−\omega^{\mathrm{2}} {r}\right)\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu{g}={A}\left[\mathrm{1}+\mathrm{sin}\:\theta\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)\right] \\ $$$${mg}\:\mathrm{sin}\:\theta+{mA}\:\mathrm{cos}\:\theta={mr}\frac{{d}\omega}{{dt}} \\ $$$$\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$$\Rightarrow{A}=\left({r}\omega\frac{{d}\omega}{{d}\theta}−{g}\:\mathrm{sin}\:\theta\right)\frac{\mathrm{1}}{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\frac{{m}}{{M}}\left(\mathrm{cos}\:\theta−\frac{{r}}{{g}}\omega^{\mathrm{2}} \right)\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)−\mu \\ $$$$\:\:\:=\left(\frac{{r}}{{g}}\omega\frac{{d}\omega}{{d}\theta}−\mathrm{sin}\:\theta\right)\frac{\mathrm{1}+\mathrm{sin}\:\theta\left(\mathrm{sin}\:\theta−\mu\:\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\omega={f}\left(\theta\right).....{not}\:{really}\:{possible}\:{to}\:{solve} \\ $$$$...... \\ $$

Commented by mr W last updated on 21/Jul/20

even for μ=0 i can′t solve this d.e.

$${even}\:{for}\:\mu=\mathrm{0}\:{i}\:{can}'{t}\:{solve}\:{this}\:{d}.{e}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com