Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 104342 by bemath last updated on 21/Jul/20

solve x (d^2 y/dx^2 )−(dy/dx)−4x^3 y = 8x^3 sin(x^2 )

$${solve}\:{x}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\frac{{dy}}{{dx}}−\mathrm{4}{x}^{\mathrm{3}} {y}\:=\:\mathrm{8}{x}^{\mathrm{3}} \mathrm{sin}\left({x}^{\mathrm{2}} \right) \\ $$

Answered by bramlex last updated on 21/Jul/20

multiplying both sides by x  ⇒x^2 .(d^2 y/dx^2 )−x(dy/dx)−4x^4 y=8x^4 sin (x^2 )...(1)  set x^2  = z → (dz/dx) = 2x   (dy/dx) = (dy/dz).(dz/dx) = 2x (dy/dz)→ (dy/dx) = 2x.(dy/dz)...(2)  (d^2 y/dx^2 ) = (d/dx)(2x (dy/dz)) = 2(dy/dz)+2x (d/dx)((dy/dx))           = 2(dy/dz) +2x (d/dz)((dy/dz)).(dz/dx)...(3)  using (2) &(3) in (1)  (→)x^2 [2(dy/dx)+4x^2  (d^2 y/dz^2 ) ]−x(2x(dy/dz))  −4x^4 y = 8x^4  sin (x^2 )  (→) 4x^4  ((d^2 y/dz^2 ) −y) = 8x^4  sin (z)  (→) (d^2 y/dz^2 ) −y = 2sin (z)   (→) (D^2 −1)y = 2sin (z)  Homogenous part  y_c  = C_1 e^(−x) +C_2 e^x   particular integral  y_p = (1/(D^2 −1))(2sin (z))= −sin (z)=−sin (x^2 )  General solution  ∴ y = C_1 e^(−x) +C_2 e^x −sin (x^2 ) ★

$${multiplying}\:{both}\:{sides}\:{by}\:{x} \\ $$$$\Rightarrow{x}^{\mathrm{2}} .\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−{x}\frac{{dy}}{{dx}}−\mathrm{4}{x}^{\mathrm{4}} {y}=\mathrm{8}{x}^{\mathrm{4}} \mathrm{sin}\:\left({x}^{\mathrm{2}} \right)...\left(\mathrm{1}\right) \\ $$$${set}\:{x}^{\mathrm{2}} \:=\:{z}\:\rightarrow\:\frac{{dz}}{{dx}}\:=\:\mathrm{2}{x}\: \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dz}}.\frac{{dz}}{{dx}}\:=\:\mathrm{2}{x}\:\frac{{dy}}{{dz}}\rightarrow\:\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}.\frac{{dy}}{{dz}}...\left(\mathrm{2}\right) \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\frac{{d}}{{dx}}\left(\mathrm{2}{x}\:\frac{{dy}}{{dz}}\right)\:=\:\mathrm{2}\frac{{dy}}{{dz}}+\mathrm{2}{x}\:\frac{{d}}{{dx}}\left(\frac{{dy}}{{dx}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\frac{{dy}}{{dz}}\:+\mathrm{2}{x}\:\frac{{d}}{{dz}}\left(\frac{{dy}}{{dz}}\right).\frac{{dz}}{{dx}}...\left(\mathrm{3}\right) \\ $$$${using}\:\left(\mathrm{2}\right)\:\&\left(\mathrm{3}\right)\:{in}\:\left(\mathrm{1}\right) \\ $$$$\left(\rightarrow\right){x}^{\mathrm{2}} \left[\mathrm{2}\frac{{dy}}{{dx}}+\mathrm{4}{x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dz}^{\mathrm{2}} }\:\right]−{x}\left(\mathrm{2}{x}\frac{{dy}}{{dz}}\right) \\ $$$$−\mathrm{4}{x}^{\mathrm{4}} {y}\:=\:\mathrm{8}{x}^{\mathrm{4}} \:\mathrm{sin}\:\left({x}^{\mathrm{2}} \right) \\ $$$$\left(\rightarrow\right)\:\mathrm{4}{x}^{\mathrm{4}} \:\left(\frac{{d}^{\mathrm{2}} {y}}{{dz}^{\mathrm{2}} }\:−{y}\right)\:=\:\mathrm{8}{x}^{\mathrm{4}} \:\mathrm{sin}\:\left({z}\right) \\ $$$$\left(\rightarrow\right)\:\frac{{d}^{\mathrm{2}} {y}}{{dz}^{\mathrm{2}} }\:−{y}\:=\:\mathrm{2sin}\:\left({z}\right)\: \\ $$$$\left(\rightarrow\right)\:\left({D}^{\mathrm{2}} −\mathrm{1}\right){y}\:=\:\mathrm{2sin}\:\left({z}\right) \\ $$$${Homogenous}\:{part} \\ $$$${y}_{{c}} \:=\:{C}_{\mathrm{1}} {e}^{−{x}} +{C}_{\mathrm{2}} {e}^{{x}} \\ $$$${particular}\:{integral} \\ $$$${y}_{{p}} =\:\frac{\mathrm{1}}{{D}^{\mathrm{2}} −\mathrm{1}}\left(\mathrm{2sin}\:\left({z}\right)\right)=\:−\mathrm{sin}\:\left({z}\right)=−\mathrm{sin}\:\left({x}^{\mathrm{2}} \right) \\ $$$$\mathcal{G}{eneral}\:{solution} \\ $$$$\therefore\:{y}\:=\:{C}_{\mathrm{1}} {e}^{−{x}} +{C}_{\mathrm{2}} {e}^{{x}} −\mathrm{sin}\:\left({x}^{\mathrm{2}} \right)\:\bigstar \\ $$

Commented by bemath last updated on 21/Jul/20

great...nice

$${great}...{nice}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com