Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 104364 by ajfour last updated on 21/Jul/20

Commented by ajfour last updated on 21/Jul/20

Find the area of the △CGI ;  C is circumcentre of △PQR,  G its centroid and I its incentre.

$${Find}\:{the}\:{area}\:{of}\:{the}\:\bigtriangleup{CGI}\:; \\ $$$${C}\:{is}\:{circumcentre}\:{of}\:\bigtriangleup{PQR}, \\ $$$${G}\:{its}\:{centroid}\:{and}\:{I}\:{its}\:{incentre}. \\ $$

Answered by mr W last updated on 21/Jul/20

c=(√(a^2 +b^2 ))  radius of incircle r  (((a+b+c)r)/2)=((ab)/2)  ⇒r=((ab)/(a+b+c))  G((a/3),(b/3))  I(r,r)  C((a/2),(b/2))  A_(ΔGCI) =(1/2)∣ determinant ((((a/2)−(a/3)),((b/2)−(b/3))),(((a/2)−r),((b/2)−r)))∣  =(1/2)∣[(a/6)((b/2)−r)−(b/6)((a/2)−r)]∣  =((ab∣a−b∣)/(12(a+b+(√(a^2 +b^2 )))))

$${c}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${radius}\:{of}\:{incircle}\:{r} \\ $$$$\frac{\left({a}+{b}+{c}\right){r}}{\mathrm{2}}=\frac{{ab}}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{ab}}{{a}+{b}+{c}} \\ $$$${G}\left(\frac{{a}}{\mathrm{3}},\frac{{b}}{\mathrm{3}}\right) \\ $$$${I}\left({r},{r}\right) \\ $$$${C}\left(\frac{{a}}{\mathrm{2}},\frac{{b}}{\mathrm{2}}\right) \\ $$$${A}_{\Delta{GCI}} =\frac{\mathrm{1}}{\mathrm{2}}\mid\begin{vmatrix}{\frac{{a}}{\mathrm{2}}−\frac{{a}}{\mathrm{3}}}&{\frac{{b}}{\mathrm{2}}−\frac{{b}}{\mathrm{3}}}\\{\frac{{a}}{\mathrm{2}}−{r}}&{\frac{{b}}{\mathrm{2}}−{r}}\end{vmatrix}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left[\frac{{a}}{\mathrm{6}}\left(\frac{{b}}{\mathrm{2}}−{r}\right)−\frac{{b}}{\mathrm{6}}\left(\frac{{a}}{\mathrm{2}}−{r}\right)\right]\mid \\ $$$$=\frac{{ab}\mid{a}−{b}\mid}{\mathrm{12}\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)} \\ $$

Commented by mr W last updated on 21/Jul/20

yes, thanks!

$${yes},\:{thanks}! \\ $$

Commented by ajfour last updated on 21/Jul/20

sir  please check , i think    A_(△CGI)  = (((b−a)r)/(12))

$${sir}\:\:{please}\:{check}\:,\:{i}\:{think} \\ $$$$\:\:{A}_{\bigtriangleup{CGI}} \:=\:\frac{\left({b}−{a}\right){r}}{\mathrm{12}} \\ $$

Answered by ajfour last updated on 21/Jul/20

let Q be origin.  R(a,0) ;  P(0,b)    x_I  =((ax_1 +bx_2 +cx_3 )/(a+b+c))       = ((a×0+b×a+c×0)/(a+b+c)) =((ab)/(a+b+c))  y_I  = ((ay_1 +by_2 +cy_3 )/(a+b+c)) = ((ab)/(a+b+c))    G((a/3),(b/3))   ;  C((a/2),(b/2))  Area △CGI =(1/2) determinant (((a/2),(b/2),1),((a/3),(b/3),1),(((ab)/(a+b+c)),((ab)/(a+b+c)),1))     =(1/2){ (a/2)((b/3)−r)−(b/2)((a/3)−r)                             +r((a/3)−(b/3))}     = (r/2)((b/6)−(a/6)) = ((r(b−a))/(12))   △_(CGI)  = ((ab(b−a))/(12(a+b+(√(a^2 +b^2 ))))) ★

$${let}\:{Q}\:{be}\:{origin}. \\ $$$${R}\left({a},\mathrm{0}\right)\:;\:\:{P}\left(\mathrm{0},{b}\right)\:\: \\ $$$${x}_{{I}} \:=\frac{{ax}_{\mathrm{1}} +{bx}_{\mathrm{2}} +{cx}_{\mathrm{3}} }{{a}+{b}+{c}}\: \\ $$$$\:\:\:\:=\:\frac{{a}×\mathrm{0}+{b}×{a}+{c}×\mathrm{0}}{{a}+{b}+{c}}\:=\frac{{ab}}{{a}+{b}+{c}} \\ $$$${y}_{{I}} \:=\:\frac{{ay}_{\mathrm{1}} +{by}_{\mathrm{2}} +{cy}_{\mathrm{3}} }{{a}+{b}+{c}}\:=\:\frac{{ab}}{{a}+{b}+{c}} \\ $$$$\:\:{G}\left(\frac{{a}}{\mathrm{3}},\frac{{b}}{\mathrm{3}}\right)\:\:\:;\:\:{C}\left(\frac{{a}}{\mathrm{2}},\frac{{b}}{\mathrm{2}}\right) \\ $$$${Area}\:\bigtriangleup{CGI}\:=\frac{\mathrm{1}}{\mathrm{2}}\begin{vmatrix}{\frac{{a}}{\mathrm{2}}}&{\frac{{b}}{\mathrm{2}}}&{\mathrm{1}}\\{\frac{{a}}{\mathrm{3}}}&{\frac{{b}}{\mathrm{3}}}&{\mathrm{1}}\\{\frac{{ab}}{{a}+{b}+{c}}}&{\frac{{ab}}{{a}+{b}+{c}}}&{\mathrm{1}}\end{vmatrix} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:\frac{{a}}{\mathrm{2}}\left(\frac{{b}}{\mathrm{3}}−{r}\right)−\frac{{b}}{\mathrm{2}}\left(\frac{{a}}{\mathrm{3}}−{r}\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{r}\left(\frac{{a}}{\mathrm{3}}−\frac{{b}}{\mathrm{3}}\right)\right\} \\ $$$$\:\:\:=\:\frac{{r}}{\mathrm{2}}\left(\frac{{b}}{\mathrm{6}}−\frac{{a}}{\mathrm{6}}\right)\:=\:\frac{{r}\left({b}−{a}\right)}{\mathrm{12}} \\ $$$$\:\bigtriangleup_{{CGI}} \:=\:\frac{{ab}\left({b}−{a}\right)}{\mathrm{12}\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)}\:\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com