All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 104459 by bemath last updated on 21/Jul/20
∫dxAcosx+B
Commented by Dwaipayan Shikari last updated on 21/Jul/20
∫dxAcosx+B=∫A(−sinx)−Asinx.1Acosx+Bdx{Acosx+B=t2∫2tdtt(−Asinx)=−2A∫1sinxdt{cosx=(t2−B).1A−2A∫1A2−(t2−B)2dt{sinx=1−(t2−BA)2−2A∫2tdt2tA2−u2{t2−B=u−1A∫duu+B.1A2−u2....continue
Answered by bobhans last updated on 21/Jul/20
I=∫dxAcosx+B.letx=π−tI=∫−dt−Acost+B=∫−dx−Acosx+B2I=∫1Acosx+B−1−Acosx+Bdx2I=∫B−Acosx−B+AcosxB2−A2cos2xdx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com