Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 104468 by ajfour last updated on 21/Jul/20

Commented by ajfour last updated on 21/Jul/20

Find r and hence area of △ABC in  terms of R.

$${Find}\:{r}\:{and}\:{hence}\:{area}\:{of}\:\bigtriangleup{ABC}\:{in} \\ $$$${terms}\:{of}\:{R}. \\ $$

Commented by mr W last updated on 22/Jul/20

it′s not clear how the small circle is  unquely defined. the blue circle in  the diagram is also valid?

$${it}'{s}\:{not}\:{clear}\:{how}\:{the}\:{small}\:{circle}\:{is} \\ $$$${unquely}\:{defined}.\:{the}\:{blue}\:{circle}\:{in} \\ $$$${the}\:{diagram}\:{is}\:{also}\:{valid}? \\ $$

Commented by mr W last updated on 22/Jul/20

Commented by malwaan last updated on 22/Jul/20

mr W  note that  ∣AB∣=∣AF ∣; ∣BF ∣=∣BE∣  in △BDE : ∡BED=90°  ;∣ED∣= r ; ∣BD∣=2R  ⇒∣BE∣=(√(4R^2 −r^2 ))  ....

$$\boldsymbol{{mr}}\:\boldsymbol{{W}} \\ $$$$\boldsymbol{{note}}\:\boldsymbol{{that}} \\ $$$$\mid{AB}\mid=\mid{AF}\:\mid;\:\mid{BF}\:\mid=\mid{BE}\mid \\ $$$${in}\:\bigtriangleup{BDE}\::\:\measuredangle{BED}=\mathrm{90}° \\ $$$$;\mid{ED}\mid=\:\boldsymbol{{r}}\:;\:\mid{BD}\mid=\mathrm{2}{R} \\ $$$$\Rightarrow\mid{BE}\mid=\sqrt{\mathrm{4}\boldsymbol{{R}}^{\mathrm{2}} −\boldsymbol{{r}}^{\mathrm{2}} } \\ $$$$.... \\ $$$$ \\ $$

Commented by mr W last updated on 22/Jul/20

then r is not unique, i think.

$${then}\:{r}\:{is}\:{not}\:{unique},\:{i}\:{think}. \\ $$

Commented by ajfour last updated on 22/Jul/20

lets then have R and r given,  Sir; to find area of △ABC,  in terms of R and r.

$${lets}\:{then}\:{have}\:{R}\:{and}\:{r}\:{given}, \\ $$$${Sir};\:{to}\:{find}\:{area}\:{of}\:\bigtriangleup{ABC}, \\ $$$${in}\:{terms}\:{of}\:{R}\:{and}\:{r}. \\ $$

Commented by malwaan last updated on 22/Jul/20

it depend on the location  of the point A  SO you are absolutely right  mr W

$${it}\:{depend}\:{on}\:{the}\:{location} \\ $$$${of}\:{the}\:{point}\:\boldsymbol{{A}} \\ $$$$\boldsymbol{{SO}}\:{you}\:{are}\:{absolutely}\:{right} \\ $$$${mr}\:{W} \\ $$

Answered by mr W last updated on 22/Jul/20

Commented by mr W last updated on 22/Jul/20

sin β=(r/(2R))  ⇒β=sin^(−1) (r/(2R))  ⇒α=2β  AB=(R/(tan (α/2)))=((R(√(4R^2 −r^2 )))/r)  β+∠C=(π/2)−α  ∠C=(π/2)−α−β=(π/2)−3β  ((BC)/(sin α))=((AB)/(sin ∠C))=((AB)/(cos 3β))  ⇒BC=((sin 2β AB)/(cos 3β))  Δ_(ABC) =((AB×BC×sin ((π/2)+β))/2)  =((AB^2 ×sin 2β×cos β)/(2 cos 3β))  =((R^2 (4R^2 −r^2 ) sin β×cos^2  β)/(r^2  cos β (4 cos^2  β−3)))  =((R^2 (4R^2 −r^2 ) (r/(2R))(√(1−(r^2 /(4R^2 )))))/(r^2  (4(1−(r^2 /(4R^2 )))−3)))  =((R^2 (4R^2 −r^2 )^(3/2) )/(4r(R^2 −r^2 )))

$$\mathrm{sin}\:\beta=\frac{{r}}{\mathrm{2}{R}} \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \frac{{r}}{\mathrm{2}{R}} \\ $$$$\Rightarrow\alpha=\mathrm{2}\beta \\ $$$${AB}=\frac{{R}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}=\frac{{R}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }}{{r}} \\ $$$$\beta+\angle{C}=\frac{\pi}{\mathrm{2}}−\alpha \\ $$$$\angle{C}=\frac{\pi}{\mathrm{2}}−\alpha−\beta=\frac{\pi}{\mathrm{2}}−\mathrm{3}\beta \\ $$$$\frac{{BC}}{\mathrm{sin}\:\alpha}=\frac{{AB}}{\mathrm{sin}\:\angle{C}}=\frac{{AB}}{\mathrm{cos}\:\mathrm{3}\beta} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{sin}\:\mathrm{2}\beta\:{AB}}{\mathrm{cos}\:\mathrm{3}\beta} \\ $$$$\Delta_{{ABC}} =\frac{{AB}×{BC}×\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\beta\right)}{\mathrm{2}} \\ $$$$=\frac{{AB}^{\mathrm{2}} ×\mathrm{sin}\:\mathrm{2}\beta×\mathrm{cos}\:\beta}{\mathrm{2}\:\mathrm{cos}\:\mathrm{3}\beta} \\ $$$$=\frac{{R}^{\mathrm{2}} \left(\mathrm{4}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)\:\mathrm{sin}\:\beta×\mathrm{cos}^{\mathrm{2}} \:\beta}{{r}^{\mathrm{2}} \:\mathrm{cos}\:\beta\:\left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta−\mathrm{3}\right)} \\ $$$$=\frac{{R}^{\mathrm{2}} \left(\mathrm{4}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)\:\frac{{r}}{\mathrm{2}{R}}\sqrt{\mathrm{1}−\frac{{r}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} }}}{{r}^{\mathrm{2}} \:\left(\mathrm{4}\left(\mathrm{1}−\frac{{r}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} }\right)−\mathrm{3}\right)} \\ $$$$=\frac{{R}^{\mathrm{2}} \left(\mathrm{4}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{4}{r}\left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)} \\ $$

Commented by ajfour last updated on 24/Jul/20

thanks sir, shall review it, bit  unwell again..  Elegant Solving Sir, too good to  follow it even, thanks a lot!

$${thanks}\:{sir},\:{shall}\:{review}\:{it},\:{bit} \\ $$$${unwell}\:{again}.. \\ $$$${Elegant}\:{Solving}\:{Sir},\:{too}\:{good}\:{to} \\ $$$${follow}\:{it}\:{even},\:{thanks}\:{a}\:{lot}! \\ $$

Commented by mr W last updated on 23/Jul/20

get well!

$${get}\:{well}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com