Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 104542 by mohammad17 last updated on 22/Jul/20

Answered by Dwaipayan Shikari last updated on 22/Jul/20

2)  tan^(−1) ((y/x))=log(x^2 +y^2 )  (((1/x).(dy/dx)−(y/x^2 ))/((y^2 /x^2 )+1))=((2x+2y(dy/dx))/(x^2 +y^2 ))  x(dy/dx)−y=2x+2y(dy/dx)  (dy/dx)=((2x+y)/(x−2y))

$$\left.\mathrm{2}\right) \\ $$$${tan}^{−\mathrm{1}} \left(\frac{{y}}{{x}}\right)={log}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\frac{\frac{\mathrm{1}}{{x}}.\frac{{dy}}{{dx}}−\frac{{y}}{{x}^{\mathrm{2}} }}{\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }+\mathrm{1}}=\frac{\mathrm{2}{x}+\mathrm{2}{y}\frac{{dy}}{{dx}}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${x}\frac{{dy}}{{dx}}−{y}=\mathrm{2}{x}+\mathrm{2}{y}\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}{x}+{y}}{{x}−\mathrm{2}{y}} \\ $$

Commented by mohammad17 last updated on 22/Jul/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by Dwaipayan Shikari last updated on 22/Jul/20

xy=y^(tanx)   logx+logy=tanx logy  (1/x)+(1/y) (dy/dx)=tanx.(1/y) (dy/dx)+sec^2 xlogy  (1/y) (dy/dx)(1−tanx)=((xsec^2 logy−1)/x)  ((tanx)/(log(xy))).(dy/dx)=((xsec^2 xlogy−1)/(x(1−tanx)))  (dy/dx)=((log(xy))/(tanx))(((xsec^2 xlogy−1)/(x(1−tanx))))

$${xy}={y}^{{tanx}} \\ $$$${logx}+{logy}={tanx}\:{logy} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:\frac{{dy}}{{dx}}={tanx}.\frac{\mathrm{1}}{{y}}\:\frac{{dy}}{{dx}}+{sec}^{\mathrm{2}} {xlogy} \\ $$$$\frac{\mathrm{1}}{{y}}\:\frac{{dy}}{{dx}}\left(\mathrm{1}−{tanx}\right)=\frac{{xsec}^{\mathrm{2}} {logy}−\mathrm{1}}{{x}} \\ $$$$\frac{{tanx}}{{log}\left({xy}\right)}.\frac{{dy}}{{dx}}=\frac{{xsec}^{\mathrm{2}} {xlogy}−\mathrm{1}}{{x}\left(\mathrm{1}−{tanx}\right)} \\ $$$$\frac{{dy}}{{dx}}=\frac{{log}\left({xy}\right)}{{tanx}}\left(\frac{{xsec}^{\mathrm{2}} {xlogy}−\mathrm{1}}{{x}\left(\mathrm{1}−{tanx}\right)}\right) \\ $$

Commented by mohammad17 last updated on 22/Jul/20

Commented by mohammad17 last updated on 22/Jul/20

sir is the solution true ?

$${sir}\:{is}\:{the}\:{solution}\:{true}\:? \\ $$

Commented by Dwaipayan Shikari last updated on 22/Jul/20

yes

$${yes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com