Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 104608 by ~blr237~ last updated on 22/Jul/20

  D^(1/2) (y)=1     ⇒   y(x)=(√(x/π))

D12(y)=1y(x)=xπ

Answered by OlafThorendsen last updated on 22/Jul/20

n∈N, ν∈C, (x^ν )^((n))  = ((Γ(ν+1))/(Γ(ν+1−n)))x^(ν−n)   By generalizing :  α∈Q, ν∈C, (x^ν )^((α))  = ((Γ(ν+1))/(Γ(ν+1−α)))x^(ν−α)   And for α = ν = (1/2) :  (x^(1/2) )^((1/2))  = ((Γ((3/2)))/(Γ(1)))x^0  = ((Γ((3/2)))/(Γ(1)))  with Γ(1) = 1 and Γ((3/2)) = ((√π)/2)  Then ((√x))^((1/2))  = ((√π)/2)  (2(√(x/π)))^((1/2))  = 1  Sorry sir I find y = 2(√(x/π))

nN,νC,(xν)(n)=Γ(ν+1)Γ(ν+1n)xνnBygeneralizing:αQ,νC,(xν)(α)=Γ(ν+1)Γ(ν+1α)xναAndforα=ν=12:(x1/2)(1/2)=Γ(32)Γ(1)x0=Γ(32)Γ(1)withΓ(1)=1andΓ(32)=π2Then(x)(1/2)=π2(2xπ)(1/2)=1SorrysirIfindy=2xπ

Commented by ~blr237~ last updated on 23/Jul/20

yes it′s correct : error of typo  But you didn′t prove the proposition only its interplay   That generalisation is also correct ( it′s the Caputo derivation) and that coincides with the Riemann-Liouville derivation when α=(1/2)   D^α (f)(x)=(1/(Γ(α))) (d/dx)(∫_(0 ) ^x t^(α−1) f(x−t)dt)      0<α  D^(1/2) (y)=1⇒D^(1/2) (D^(1/2) (y))=D^(1/2) (1)     ⇒ y′(x)= (1/(Γ((1/2)))) (d/dx)( 2(√x) )  ⇒y(x)=2(√(x/π))

yesitscorrect:erroroftypoButyoudidntprovethepropositiononlyitsinterplayThatgeneralisationisalsocorrect(itstheCaputoderivation)andthatcoincideswiththeRiemannLiouvillederivationwhenα=12Dα(f)(x)=1Γ(α)ddx(0xtα1f(xt)dt)0<αD12(y)=1D12(D12(y))=D12(1)y(x)=1Γ(12)ddx(2x)y(x)=2xπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com