All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 104608 by ~blr237~ last updated on 22/Jul/20
D12(y)=1⇒y(x)=xπ
Answered by OlafThorendsen last updated on 22/Jul/20
n∈N,ν∈C,(xν)(n)=Γ(ν+1)Γ(ν+1−n)xν−nBygeneralizing:α∈Q,ν∈C,(xν)(α)=Γ(ν+1)Γ(ν+1−α)xν−αAndforα=ν=12:(x1/2)(1/2)=Γ(32)Γ(1)x0=Γ(32)Γ(1)withΓ(1)=1andΓ(32)=π2Then(x)(1/2)=π2(2xπ)(1/2)=1SorrysirIfindy=2xπ
Commented by ~blr237~ last updated on 23/Jul/20
yesit′scorrect:erroroftypoButyoudidn′tprovethepropositiononlyitsinterplayThatgeneralisationisalsocorrect(it′stheCaputoderivation)andthatcoincideswiththeRiemann−Liouvillederivationwhenα=12Dα(f)(x)=1Γ(α)ddx(∫0xtα−1f(x−t)dt)0<αD12(y)=1⇒D12(D12(y))=D12(1)⇒y′(x)=1Γ(12)ddx(2x)⇒y(x)=2xπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com