Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 104609 by  M±th+et+s last updated on 22/Jul/20

prove:  ∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 ))dx=((22)/7)−π

prove:01x4(1x)41+x2dx=227π

Answered by Dwaipayan Shikari last updated on 22/Jul/20

∫_0 ^1 ((x^4 (1−2x+x^2 )^2 )/(1+x^2 ))dx  ∫_0 ^1 ((x^4 ((1+x^2 )^2 −4x(1+x^2 )+4x^2 ))/(1+x^2 ))dx  ∫_0 ^1 x^4 (1+x^2 )−4x^5 +((4x^6 )/(1+x^2 ))dx  ∫_0 ^1 x^4 +x^6 −4x^5 +((4x^6 +4)/(1+x^2 ))−(4/(1+x^2 ))dx  [(x^5 /5)+(x^7 /7)−((4x^6 )/6)]_0 ^1 +∫4(x^4 −x^2 +1)−[4 tan^(−1) x]_0 ^1   (1/5)+(1/7)−(2/3)+(4/5)−(4/3)+4−4.(π/4)  =1+(1/7)−2+4−π  =3+(1/7)−π  =((22)/7)−π     It proves that 𝛑 is smaller than ((22)/7)

01x4(12x+x2)21+x2dx01x4((1+x2)24x(1+x2)+4x2)1+x2dx01x4(1+x2)4x5+4x61+x2dx01x4+x64x5+4x6+41+x241+x2dx[x55+x774x66]01+4(x4x2+1)[4tan1x]0115+1723+4543+44.π4=1+172+4π=3+17π=227πItprovesthatπissmallerthan227

Commented by Dwaipayan Shikari last updated on 22/Jul/20

����

Commented by Ar Brandon last updated on 22/Jul/20

Great decomposition ��

Commented by  M±th+et+s last updated on 22/Jul/20

nice work sir

niceworksir

Commented by Dwaipayan Shikari last updated on 22/Jul/20

������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com