Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 104644 by Rohit@Thakur last updated on 22/Jul/20

∫_0 ^1 ((log(1−x+x^2 −x^3 +x^4 )dx)/x) = −(π^2 /(15))

01log(1x+x2x3+x4)dxx=π215

Answered by mathmax by abdo last updated on 23/Jul/20

I =∫_0 ^1  ((ln(1−x+x^2 −x^3  +x^4 ))/x)dx ⇒I =∫_0 ^1  ((ln(((1−(−x)^5 )/(1−(−x)))))/x)dx  =∫_0 ^1  ((ln(1+x^5 )−ln(1+x))/x)dx =∫_0 ^1  ((ln(1+x^5 ))/x)dx−∫_0 ^1  ((ln(1+x))/x)dx  we have ln^′ (1+u) =(1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n    for ∣u∣<1 ⇒  ln(1+u)=Σ_(n=0) ^∞  (((−1)^n  u^(n+1) )/(n+1)) +c(c=0) =Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) ⇒  ((ln(1+x))/x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(n−1)  ⇒∫_0 ^(1 )  ((ln(1+x))/x)dx =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )  =−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =−δ(2) =−(2^(1−2) −1)ξ(2) =−(−(1/2))×(π^2 /6) =(π^2 /(12))  ln(1+x^5 ) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(5n)  ⇒((ln(1+x^5 ))/x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^(5n−1)  ⇒  ∫_0 ^1  ((ln(1+x^5 ))/x)dx =Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(5n))) =−(1/5) Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/5)×(π^2 /(12)) =(π^2 /(60))  ⇒ I =(π^2 /(60))−(π^2 /(12)) =((1/(60))−(1/(12)))π^2  =((1−5)/(60))×π^2  =−((4π^2 )/(60)) =−(π^2 /(15))  the result is proved.

I=01ln(1x+x2x3+x4)xdxI=01ln(1(x)51(x))xdx=01ln(1+x5)ln(1+x)xdx=01ln(1+x5)xdx01ln(1+x)xdxwehaveln(1+u)=11+u=n=0(1)nunforu∣<1ln(1+u)=n=0(1)nun+1n+1+c(c=0)=n=1(1)n1unnln(1+x)x=n=1(1)n1nxn101ln(1+x)xdx=n=1(1)n1n2=n=1(1)nn2=δ(2)=(2121)ξ(2)=(12)×π26=π212ln(1+x5)=n=1(1)n1nx5nln(1+x5)x=n=1(1)n1nx5n101ln(1+x5)xdx=n=1(1)n1n(5n)=15n=1(1)nn2=15×π212=π260I=π260π212=(160112)π2=1560×π2=4π260=π215theresultisproved.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com