Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 104657 by bobhans last updated on 23/Jul/20

(x+yi)^3  = ((10(2y+8i)^2 )/(3−i))  find x & y

(x+yi)3=10(2y+8i)23i findx&y

Answered by bramlex last updated on 23/Jul/20

(x+yi)^3  = ((10(2y+8i)^2 (3+i))/(10))  (x+yi)^3  = 4(3+i)(y+4i)^2   x^3 +3x^2 yi−3xy^2 −y^3 i =  4(3+i)(y^2 +8yi−16)  x^3 +3x^2 yi−3xy^2 −y^3 i = 4(3y^2 +24yi−48+  y^2 i−8y−16i)  x^3 +3x^2 yi−3xy^2 −y^3 i = 12y^2 +96yi−192+  4y^2 i−32y−64i)  → { ((x^3 −3xy^2  = 12y^2 −192−32y)),((3x^2 yi −y^3 i = 4y^2 i−64i  )) :}  we get    { ((x^3 −3xy^2  = 12y^2 −32y−192)),((3x^2 y−y^3  = 4y^2 −64)) :}

(x+yi)3=10(2y+8i)2(3+i)10 (x+yi)3=4(3+i)(y+4i)2 x3+3x2yi3xy2y3i= 4(3+i)(y2+8yi16) x3+3x2yi3xy2y3i=4(3y2+24yi48+ y2i8y16i) x3+3x2yi3xy2y3i=12y2+96yi192+ 4y2i32y64i) {x33xy2=12y219232y3x2yiy3i=4y2i64i weget {x33xy2=12y232y1923x2yy3=4y264

Terms of Service

Privacy Policy

Contact: info@tinkutara.com