Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 104676 by qwertyu last updated on 23/Jul/20

Commented by Dwaipayan Shikari last updated on 23/Jul/20

cos36°+cos108°=cos36°−cos72°  =(((√5)+1)/4)−(((√5)−1)/4)=(1/2)

cos36°+cos108°=cos36°cos72°=5+14514=12

Commented by OlafThorendsen last updated on 23/Jul/20

36° and 72° are not  remarkable angles sir.  You should prove that  cos36° = (((√5)+1)/4) and cos72° = (((√5)−1)/4)

36°and72°arenotremarkableanglessir.Youshouldprovethatcos36°=5+14andcos72°=514

Commented by Dwaipayan Shikari last updated on 23/Jul/20

θ=18°  sin5θ=1  2θ+3θ=(π/2)  sin2θ=cos3θ  2sinθcosθ=4cos^3 θ−3cosθ  2sinθ=4cos^2 θ−3  2sinθ=1−4sin^2 θ  4sin^2 θ+2sinθ−1=0  sinθ=((−2+(√(4+16)))/(2.4))=(((√5)−1)/4)  sin18°=(((√5)−1)/4)=cos72°  cos72°=cos^2 36°−sin^2 36°=2cos^2 36°−1  cos36°=(((√5)+1)/4)

θ=18°sin5θ=12θ+3θ=π2sin2θ=cos3θ2sinθcosθ=4cos3θ3cosθ2sinθ=4cos2θ32sinθ=14sin2θ4sin2θ+2sinθ1=0sinθ=2+4+162.4=514sin18°=514=cos72°cos72°=cos236°sin236°=2cos236°1cos36°=5+14

Commented by OlafThorendsen last updated on 23/Jul/20

Waouh. Great method sir!

Waouh.Greatmethodsir!

Answered by bemath last updated on 23/Jul/20

cos a + cos  b = 2cos (((a+b)/2)) cos(((a−b)/2))  cos 36°+cos 108°=   2cos 72° cos 36° = 2sin 18°cos 36°  = 2sin 18° (1−2sin^2 18°)  = 2((((√5)−1)/4))(1−2((((√5)−1)/4))^2 )  = (1/2)((√5)−1)(1−2(((6−2(√5))/(16))))  =(1/2)((√5)−1)(1−(((3−(√5))/4)))  =(1/8)((√5)−1)((√5)+1)  = (1/8)×4= (1/2) ★

cosa+cosb=2cos(a+b2)cos(ab2)cos36°+cos108°=2cos72°cos36°=2sin18°cos36°=2sin18°(12sin218°)=2(514)(12(514)2)=12(51)(12(62516))=12(51)(1(354))=18(51)(5+1)=18×4=12

Commented by OlafThorendsen last updated on 23/Jul/20

you should explain why  sin18° is equal to (((√5)−1)/4) sir.

youshouldexplainwhysin18°isequalto514sir.

Commented by 6478 last updated on 23/Jul/20

cos a + cos  b = 2cos (((a+b)/2)) cos(((a−b)/2))  cos 36°+cos 108°=   2cos 72° cos 36° = 2sin 18°cos 36°  = 2sin 18° (1−2sin^2 18°)  = 2((((√5)−1)/4))(1−2((((√5)−1)/4))^2 )  = (1/2)((√5)−1)(1−2(((6−2(√5))/(16))))  =(1/2)((√5)−1)(1−(((3−(√5))/4)))  =(1/8)((√5)−1)((√5)+1)  = (1/8)×4= (1/2) ★

cosa+cosb=2cos(a+b2)cos(ab2)cos36°+cos108°=2cos72°cos36°=2sin18°cos36°=2sin18°(12sin218°)=2(514)(12(514)2)=12(51)(12(62516))=12(51)(1(354))=18(51)(5+1)=18×4=12

Commented by bemath last updated on 23/Jul/20

Answered by OlafThorendsen last updated on 23/Jul/20

a = cos36°  b = cos108°  a+b = cos36°+cos108° = cos(π/5)+cos((3π)/5)  a+b = cos(π/5)−cos((2π)/5)  a+b = cos(π/5)−(2cos^2 (π/5)−1)  a+b = a−2a^2 +1 (1)  a+b = cos(π/5)+cos((3π)/5)  a+b = 2cos((((3π)/5)+(π/5))/2)cos((((3π)/5)−(π/5))/2)  a+b = 2cos((2π)/5)cos(π/5)  a+b = 2(2a^2 −1)a (2)  (1) and (2) :  2(2a^2 −1)a = a−2a^2 +1  4a^3 +2a^2 −3a−1 = 0  (a+1)(4a^2 −2a−1) = 0  a = cos(π/5) = −1 : impossible  4a^2 −2a−1 = 0  a = ((1±(√5))/4)  a = cos(π/5) = ((1−(√5))/4)<0 : impossible  Finally a = cos(π/5) = ((1+(√5))/4)  Then b = cos((3π)/5) = −cos((2π)/5) = −(2a^2 −1)  b = 1−2(((1+(√5))/4))^2  = ((1−(√5))/4)  a+b = ((1+(√5))/4)+((1−(√5))/4) = (1/2)

a=cos36°b=cos108°a+b=cos36°+cos108°=cosπ5+cos3π5a+b=cosπ5cos2π5a+b=cosπ5(2cos2π51)a+b=a2a2+1(1)a+b=cosπ5+cos3π5a+b=2cos3π5+π52cos3π5π52a+b=2cos2π5cosπ5a+b=2(2a21)a(2)(1)and(2):2(2a21)a=a2a2+14a3+2a23a1=0(a+1)(4a22a1)=0a=cosπ5=1:impossible4a22a1=0a=1±54a=cosπ5=154<0:impossibleFinallya=cosπ5=1+54Thenb=cos3π5=cos2π5=(2a21)b=12(1+54)2=154a+b=1+54+154=12

Answered by 1549442205PVT last updated on 23/Jul/20

36°+54°=90°⇒sin36°=cos54°  ⇒2sin18°cos18°=cos3.18°=4cos^3 18°−3cos18°  ⇒2sin18°=4cos^2 18°−3  ⇒2sin18°=4(1−sin^2 18°)−3  ⇔4sin^2 18°+2sin18°−1=0  ⇔(2sin18°+(1/2))^2 −(5/4)=0⇔2sin18°+(1/2)=((√5)/2)  ⇒sin18°=(((√5)−1)/4)⇒cos72°=sin18°=(((√5)−1)/4)  cos 72°=2co^2 36°−1=(((√5)−1)/4)  ⇒cos^2 36°=((3+(√5))/8)=((6+2(√5))/(16))⇒cos36°=(((√5)+1)/4)  cos108°=cos(90°+18°)=−sin18°=((1−(√5))/4)  Therefore,cos36°+cos108°=  ((1+(√5))/4)+((1−(√5))/4)=(1/2)

36°+54°=90°sin36°=cos54°2sin18°cos18°=cos3.18°=4cos318°3cos18°2sin18°=4cos218°32sin18°=4(1sin218°)34sin218°+2sin18°1=0(2sin18°+12)254=02sin18°+12=52sin18°=514cos72°=sin18°=514cos72°=2co236°1=514cos236°=3+58=6+2516cos36°=5+14cos108°=cos(90°+18°)=sin18°=154Therefore,cos36°+cos108°=1+54+154=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com