All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 104718 by M±th+et+s last updated on 23/Jul/20
∫tan−1(ax+bc)dx
Answered by Dwaipayan Shikari last updated on 23/Jul/20
∫2cxatan−1uduu=ax+bc⇒a2cx=dudx2ca∫xtan−1dux=cu−ba2ca∫(cua−ba)tan−1udu2c2a2∫utan−1u−2bca2∫tan−1udu∫utan−1u=u22tan−1u−12∫u2u2+1=u22tan−1u−u2−12tan−1u∫tan−1udu=utan−1u−12log(u2+1)2c2a2(u22tan−1u−u2−12tan−1u)−2bca2(utan−1u−12log(u2+1))+C2c2a2((ax+bc)22tan−1(ax+bc)−ax+b2c−12tan−1(ax+bc))+(−2bca2(ax+bctan−1(ax+bc)−12log((ax+bc)2+1))+C
Commented by M±th+et+s last updated on 23/Jul/20
welldone
Answered by mathmax by abdo last updated on 24/Jul/20
I=∫arctan(ax+bc)dxwedothechangementax+bc=t⇒ax+b=ct⇒ax=ct−b⇒a2x=(ct−b)2⇒x=(ct−b)2a2⇒dxdt=2c(ct−b)a2⇒I=2ca2∫arctan(t)(ct−b)dt⇒a22c×I=∫(ct−b)arctan(t)dt=byparts(ct22−bt)arctan(t)−∫(ct22−bt)dt1+t2=(ct22−bt)arctan(t)−c2∫t21+t2dt+b∫tdt1+t2wehave∫t21+t2dt=∫1+t2−11+t2dt=t−arctan(t)+c0∫tdt1+t2=12ln(1+t2)+c1⇒a22cI=(ct22−bt)arctan(t)−c2{t−arctan(t)}+b2ln(1+t2)+C=(c2(ax+bc)2−b×ax+bc)arctan(ax+bc)−c2{ax+bc−arctan(ax+bc)+b2ln(1+(ax+bc)2)+C.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com