Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 104769 by mr W last updated on 23/Jul/20

Commented by mr W last updated on 23/Jul/20

find the coordinates of the image B′   of the point B(p,q) in the mirror  y=x^2  for an observer at the point  A(h,k).

findthecoordinatesoftheimageBofthepointB(p,q)inthemirrory=x2foranobserveratthepointA(h,k).

Answered by mr W last updated on 24/Jul/20

Commented by mr W last updated on 25/Jul/20

say the reflection point is P(t,t^2 )  tan θ=y′=2t  tan ϕ=((q−t^2 )/(p−t))  tan φ=((k−t^2 )/(h−t))  tan α=tan (θ−ϕ)=((2t−((q−t^2 )/(p−t)))/(1+2t×((q−t^2 )/(p−t))))=((t^2 −2pt+q)/(2t^3 −(2q−1)t−p))  tan α=tan (∅−θ)=((((k−t^2 )/(h−t))−2t)/(1+((k−t^2 )/(h−t))×2t))=−((t^2 −2ht+k)/(2t^3 −(2k−1)t−h))  ⇒((t^2 −2pt+q)/(2t^3 −(2q−1)t−p))+((t^2 −2ht+k)/(2t^3 −(2k−1)t−h))=0  ⇒t=....    tangent line at point P:  2tx−y−t^2 =0    image of B(p,q) about tangent line:  x_(B′) =p−((4t(2tp−q−t^2 ))/(4t^2 +1))  y_(B′) =q+((2(2tp−q−t^2 ))/(4t^2 +1))

saythereflectionpointisP(t,t2)tanθ=y=2ttanφ=qt2pttanϕ=kt2httanα=tan(θφ)=2tqt2pt1+2t×qt2pt=t22pt+q2t3(2q1)tptanα=tan(θ)=kt2ht2t1+kt2ht×2t=t22ht+k2t3(2k1)tht22pt+q2t3(2q1)tp+t22ht+k2t3(2k1)th=0t=....tangentlineatpointP:2txyt2=0imageofB(p,q)abouttangentline:xB=p4t(2tpqt2)4t2+1yB=q+2(2tpqt2)4t2+1

Commented by mr W last updated on 25/Jul/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com