Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 104774 by mathmax by abdo last updated on 23/Jul/20

let B_n = ∫∫_([0,n[^2 )    ((arctan(x^2 +3y^2 ))/(√(x^2  +3y^2 )))dxdy  calculate lim_(n→+∞)  (B_n /n)

letBn=[0,n[2arctan(x2+3y2)x2+3y2dxdycalculatelimn+Bnn

Answered by mathmax by abdo last updated on 26/Jul/20

we do the changement  { ((x =rcosθ)),((y =(r/(√3))sinθ)) :}  we hsve 0≤x<n and 0≤y <n ⇒0 ≤x^2  +3y^2  <4n^2  ⇒  0≤r^2 <4n^2  ⇒0≤r<2n ⇒B_n =∫_0 ^(2n) ∫_0 ^(π/2)  ((arctan(r^2 ))/r) r dr dθ  =(π/2) ∫_0 ^(2n)  arctan(r^2 )dr  by psrts   ∫  arctan(r^2 )dr =r arctan(r^2 )−∫ r×((2r)/(1+r^4 ))dr  =r arctan(r^2 )−2 ∫ (r^2 /(1+r^4 ))dr and  ∫ (r^2 /(1+r^4 )) dr =∫ (1/((1/r^2 ) +r^2 ))dr =(1/2)∫ ((1−(1/r^2 )+1+(1/r^2 ))/(r^2 +(1/r^2 )))dr  =(1/2) ∫ (((1−(1/r^2 ))dr)/((r+(1/r))^2 −2))(→u =r+(1/r))+(1/2)∫  (((1+(1/r^2 ))dr)/((r−(1/r))^2  +2))(v=r−(1/r))  =(1/2)∫ (du/(u^2 −2)) +(1/2)∫ (dv/(v^2  +2))(→v =(√2)α)  =(1/(4(√2)))∫((1/(u−(√2)))−(1/(u+(√2))))du +(1/2)∫ (((√2)dα)/(2(1+α^2 )))  =(1/(4(√2)))ln∣((u−(√2))/(u+(√2)))∣ +(1/(2(√2))) arctan((v/(√2))) +c  =(1/(4(√2)))ln∣((r+(1/r)−(√2))/(r+(1/r)+(√2)))∣+(1/(2(√2))) arctan((1/(√2))(r−(1/r))) +c

wedothechangement{x=rcosθy=r3sinθwehsve0x<nand0y<n0x2+3y2<4n20r2<4n20r<2nBn=02n0π2arctan(r2)rrdrdθ=π202narctan(r2)drbypsrtsarctan(r2)dr=rarctan(r2)r×2r1+r4dr=rarctan(r2)2r21+r4drandr21+r4dr=11r2+r2dr=1211r2+1+1r2r2+1r2dr=12(11r2)dr(r+1r)22(u=r+1r)+12(1+1r2)dr(r1r)2+2(v=r1r)=12duu22+12dvv2+2(v=2α)=142(1u21u+2)du+122dα2(1+α2)=142lnu2u+2+122arctan(v2)+c=142lnr+1r2r+1r+2+122arctan(12(r1r))+c

Commented by mathmax by abdo last updated on 26/Jul/20

=(1/(2(√2))){ ln((√((r+(1/r)−(√2))/(r+(1/r)+(√2))))) +arctan((1/(√2))(r−(1/r))) +c ⇒  ∫_0 ^(2n)  arctan(r^2 )dr =[r arctan(r^2 )]_0 ^(2n)  −(1/(√2))[{ln((√((r^2 +1−(√2)r)/(r^2  +1+(√2)r))))  +arctan((1/(√2))(r−(1/r)))]_0 ^(2n)   =2n arctan(4n^2 )−(1/(√2)){ln((√((4n^2 +1−2(√2)n)/(4n^2  +1+2(√2)n))))+arctan((1/(√2))(2n−(1/(2n)))=u_n   +(π/2)} ⇒B_n =(π/2)u_n  ⇒(B_n /n) =(π/2)(u_n /n)  =π arctan(4n^2 ) −(1/(n(√2))){ln(√((4n^2  +1−2(√2)n)/(4n^2  +1+2(√2)n)))+arctan((1/(√2))(2n−(1/n))}  ⇒lim_(n→+∞)  (B_n /n) =π×(π/2) =(π^2 /2)

=122{ln(r+1r2r+1r+2)+arctan(12(r1r))+c02narctan(r2)dr=[rarctan(r2)]02n12[{ln(r2+12rr2+1+2r)+arctan(12(r1r))]02n=2narctan(4n2)12{ln(4n2+122n4n2+1+22n)+arctan(12(2n12n)=un+π2}Bn=π2unBnn=π2unn=πarctan(4n2)1n2{ln4n2+122n4n2+1+22n+arctan(12(2n1n)}limn+Bnn=π×π2=π22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com