Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 104780 by Aziztisffola last updated on 23/Jul/20

Commented by Dwaipayan Shikari last updated on 23/Jul/20

(π^2 /6)  Γ(s).ζ(s)=∫_0 ^∞ (x^(s−1) /(e^x +1))dx  Γ(2).ζ(2)=∫_0 ^∞ (x^(2−1) /(e^x +1))dx  (2−1)!ζ(2)=∫_0 ^∞ (x/(e^x +1))dx  ζ(2)=Σ_(n=1) ^∞ (1/n^2 )=(π^2 /6)  so  ∫_0 ^∞ (x/(e^x +1))=(π^2 /6)

π26Γ(s).ζ(s)=0xs1ex+1dxΓ(2).ζ(2)=0x21ex+1dx(21)!ζ(2)=0xex+1dxζ(2)=n=11n2=π26so0xex+1=π26

Commented by Aziztisffola last updated on 23/Jul/20

Thanks sir , I found Γ(2).ζ(2)=(π^2 /6)

Thankssir,IfoundΓ(2).ζ(2)=π26

Answered by abdomsup last updated on 23/Jul/20

∫_0 ^∞ (x/(e^x −1))dx =∫_0 ^∞ ((xe^(−x) )/(1−e^(−x) ))dx  =∫_0 ^∞ xe^(−x) (Σ_(n==0) ^∞ e^(−nx) )dx  =Σ_(n=0) ^∞  ∫_0 ^∞ x e^(−(n+1)x) dx  =_((n+1)x=t)    Σ_(n=0) ^∞  ∫_0 ^∞ (t/(n+1))e^(−t) (dt/(n+1))  =Σ_(n=0) ^∞  (1/((n+1)^2 )) ∫_0 ^∞  t e^(−t)  dt  =Σ_(n=1) ^∞  (1/n^2 ).Γ(2)  =ξ(2).Γ(2) =(π^2 /6)×1! =(π^2 /6)

0xex1dx=0xex1exdx=0xex(n==0enx)dx=n=00xe(n+1)xdx=(n+1)x=tn=00tn+1etdtn+1=n=01(n+1)20tetdt=n=11n2.Γ(2)=ξ(2).Γ(2)=π26×1!=π26

Commented by Aziztisffola last updated on 23/Jul/20

Thanks Sir

ThanksSir

Commented by mathmax by abdo last updated on 24/Jul/20

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com