Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 104821 by bobhans last updated on 24/Jul/20

3+8+15+24+35+...   find sum of 50^(th) −term

3+8+15+24+35+...findsumof50thterm

Answered by bemath last updated on 24/Jul/20

S_(50)  = 3C_1 ^( 50)  + 5C _2^(50)  + 2C _3^(50)           = 150 +5×25×49+2×((50×49×48)/(3×2×1))          = 45475 ★

S50=3C150+5C250+2C350=150+5×25×49+2×50×49×483×2×1=45475

Commented by bobhans last updated on 24/Jul/20

thank you

thankyou

Answered by 1549442205PVT last updated on 24/Jul/20

Since 8−3=5,15−8=7,24−15=9,35−24=11  and 5,7,9,11...form an arithmetic progress,  u_n =an^2 +bn+c,so   { ((u_1 =3=a+b+c(1))),((u_2 =8=4a+2b+c(2)⇒ { ((3a+b=5(4))),((5a+b=7(5))) :})),((u_3 =15=9a+3b+c(3))) :}  ⇒2a=2⇒a=1⇒b=2,c=0  u_n =n^2 +2n⇒u_(50) =50^2 +2×50=2600  S_n =Σ_(k=1) ^(n) (k^2 +2k)=Σ_(k=1) ^(n) k^2 +2Σ_(l=1) ^(n) k=((n(n+1)(2n+1))/6)+n(n+1)  =((n(n+1)(2n+7))/6).Therefore,  S_(50) =((50×51×107)/6)=25×17×107=45475

Since83=5,158=7,2415=9,3524=11and5,7,9,11...formanarithmeticprogress,un=an2+bn+c,so{u1=3=a+b+c(1)u2=8=4a+2b+c(2){3a+b=5(4)5a+b=7(5)u3=15=9a+3b+c(3)2a=2a=1b=2,c=0un=n2+2nu50=502+2×50=2600Sn=Σnk=1(k2+2k)=Σnk=1k2+2Σnl=1k=n(n+1)(2n+1)6+n(n+1)=n(n+1)(2n+7)6.Therefore,S50=50×51×1076=25×17×107=45475

Commented by bobhans last updated on 24/Jul/20

sir the question want to find Σ_(n=1) ^(50) u_n   o yes..thank you

sirthequestionwanttofind50n=1unoyes..thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com