Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 104871 by I want to learn more last updated on 24/Jul/20

Answered by mathmax by abdo last updated on 24/Jul/20

A_p =∫_0 ^1  ((tan^2 x)/x^p )dx ⇒A_p =∫_0 ^1  (((tanx)/x))^2  ×(dx/x^(p−2) )  the function x→(((tanx)/x))^2 ×(1/x^(p−2) ) is continue on]0,1] so integrable  at V(o) f(x) ∼(1/x^(p−2) ) and ∫ (dx/x^(p−2) ) converge ⇔ p−2<1 ⇔p<3

Ap=01tan2xxpdxAp=01(tanxx)2×dxxp2thefunctionx(tanxx)2×1xp2iscontinueon]0,1]sointegrableatV(o)f(x)1xp2anddxxp2convergep2<1p<3

Commented by I want to learn more last updated on 24/Jul/20

Thanks sir. I appreciate.

Thankssir.Iappreciate.

Commented by mathmax by abdo last updated on 24/Jul/20

you are welcome sir.

youarewelcomesir.

Answered by mathmax by abdo last updated on 24/Jul/20

4) let S =Σ_(n=2) ^∞  n x^(n−2)  ⇒S =Σ_(n=0) ^∞ (n+2)x^n  =Σ_(n=0) ^∞  nx^n  +2Σ_(n=0) ^∞  x^n   for ∣x∣<1 we get Σ_(n=1) ^∞  x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒ S =(x/((1−x)^2 )) +(2/(1−x)) =((x +2(1−x))/((1−x)^2 )) =((x+2−2x)/((1−x)^2 )) ⇒  S =((2−x)/((1−x)^2 )) .

4)letS=n=2nxn2S=n=0(n+2)xn=n=0nxn+2n=0xnforx∣<1wegetn=1xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2S=x(1x)2+21x=x+2(1x)(1x)2=x+22x(1x)2S=2x(1x)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com