Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 104891 by mathmax by abdo last updated on 24/Jul/20

1) decompose the fraction F(x) =(1/(x^3 (x+1)^3 ))  2) find the sum Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^3 ))

1)decomposethefractionF(x)=1x3(x+1)32)findthesumn=1(1)nn3(n+1)3

Answered by mathmax by abdo last updated on 26/Jul/20

1) F(x) =(1/(x^3 (x+1)^3 )) ⇒F(x) =((1/(x(3+1))))^3  =((1/x)−(1/(x+1)))^3   =(1/x^3 )−(3/(x^2 (x+1))) +(3/(x(x+1)^2 ))−(1/((x+1)^3 ))  =(1/x^3 ) −(3/x)((1/x)−(1/(x+1))) +(3/(x+1))((1/x)−(1/(x+1)))−(1/((x+1)^3 ))  =(1/x^3 )−(3/x^2 ) +(3/(x(x+1))) +(3/(x(x+1)))−(3/((x+1)^2 ))−(1/((x+1)^3 ))  =(1/x^3 )−(3/x^2 ) +6((1/x)−(1/(x+1)))−(3/((x+1)^2 ))−(1/((x+1)^3 ))  ⇒F(x) =(6/x)−(3/x^2 )+(1/x^3 )−(6/(x+1))−(3/((x+1)^2 ))−(1/((x+1)^3 ))

1)F(x)=1x3(x+1)3F(x)=(1x(3+1))3=(1x1x+1)3=1x33x2(x+1)+3x(x+1)21(x+1)3=1x33x(1x1x+1)+3x+1(1x1x+1)1(x+1)3=1x33x2+3x(x+1)+3x(x+1)3(x+1)21(x+1)3=1x33x2+6(1x1x+1)3(x+1)21(x+1)3F(x)=6x3x2+1x36x+13(x+1)21(x+1)3

Commented by mathmax by abdo last updated on 26/Jul/20

2) let S =Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^3 )) ⇒S =lim_(n→+∞) Σ_(k=1) ^n  (((−1)^k )/(k^3 (k+1)^3 ))  Σ_(k=1) ^n  (((−1)^k )/(k^3 (k+1)^3 )) =6 Σ_(k=1) ^n  (((−1)^k )/k)−3Σ_(k=1) ^n  (((−1)^k )/k^2 ) +Σ_(k=1) ^n  (((−1)^k )/k^3 )−6Σ_(k=1) ^n  (((−1)^k )/(k+1))  −3 Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 ))−Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 ))  but we have  Σ_(k=1) ^(n )  (((−1)^k )/k) →−ln2(n→+∞)  Σ_(k=1) ^n  (((−1)^k )/k^2 ) →Σ_(k=1) ^∞  (((−1)^k )/k^2 ) =δ(2) =(2^(1−2) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/k^3 ) →Σ_(k=1) ^∞  (((−1)^k )/k^3 ) =δ(3) =(2^(1−3) −1)ξ(3) =−(3/4)ξ(3)  Σ_(k=1) ^n  (((−1)^k )/(k+1)) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k)−1 =−Σ_(k=1) ^(n+1 ) (((−1)^k )/k)−1  →ln(2)−1  Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^2 ) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^2 ) −1 →−δ(2)−1=(π^2 /(12))−1  Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^3 ) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k^3 )−1 →−δ(3)−1  =(3/4)ξ(3)−1 ⇒  S =−6ln(2)−3(−(π^2 /(12)))−(3/4)ξ(3)−6(ln2−1)−3((π^2 /(12))−1)+ξ(3)+1  =−12ln(2)+(π^2 /4) +(1/4)ξ(3)+6−(π^2 /4) +4  S=−12ln(2)+10 +(1/4)ξ(3)

2)letS=n=1(1)nn3(n+1)3S=limn+k=1n(1)kk3(k+1)3k=1n(1)kk3(k+1)3=6k=1n(1)kk3k=1n(1)kk2+k=1n(1)kk36k=1n(1)kk+13k=1n(1)k(k+1)2k=1n(1)k(k+1)3butwehavek=1n(1)kkln2(n+)k=1n(1)kk2k=1(1)kk2=δ(2)=(2121)ξ(2)=12×π26=π212k=1n(1)kk3k=1(1)kk3=δ(3)=(2131)ξ(3)=34ξ(3)k=1n(1)kk+1=k=2n+1(1)k1k=k=1n+1(1)k1k1=k=1n+1(1)kk1ln(2)1k=1n(1)k(k+1)2=k=2n+1(1)k1k2=k=2n+1(1)k1k21δ(2)1=π2121k=1n(1)k(k+1)3=k=2n+1(1)k1k3=k=1n+1(1)k1k31δ(3)1=34ξ(3)1S=6ln(2)3(π212)34ξ(3)6(ln21)3(π2121)+ξ(3)+1=12ln(2)+π24+14ξ(3)+6π24+4S=12ln(2)+10+14ξ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com