All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 104899 by bramlex last updated on 24/Jul/20
limx→0cos(sinx)−cos(x)x4?
Answered by john santu last updated on 24/Jul/20
limx→0−2sin(x+sinx2)sin(sinx−x2)x4limx→0−2(x+sinx2)(sinx−x2)x4limx→0−(x+x+x33!)(x+x33!−x)2x4limx→0−x36(2x+x36)2x4=−limx→0x4(2+x26)12x4=−16.(JS♠)
Answered by mathmax by abdo last updated on 24/Jul/20
wehavecosx=∑n=0∞(−1)nx2n(2n)!=1−x22+x44!+...sinx=∑n=0∞(−1)nx2n+1(2n+1)!=x−x33!+...⇒cos(sinx)=cos(x−x33!+...)=1−12(x−x33!)2+14!(x−x33!)4+...=1−x22(1−x23!)2+x44!(1−x23!)4+....=1−x22(1−2x23!+x4(3!)2)+x44!(1−x23!)2(1−x23!)2+...=1−x22+x43!−x62(3!)2+x44!(1−2x23!+x4(3!)2)(1−2x23!+x4(3!)2)=1−x22+x43!−x62(3!)2+x44!(1−2x23!+x4(3!)2)−2x23!+...)∼1−x22+(13!+14!)x4⇒cos(sinx)−cosx∼1−x22+(13!+14!)x4−1+x22−x44!=x43!⇒limx→0cos(sinx)−cosxx4=13!=16
Terms of Service
Privacy Policy
Contact: info@tinkutara.com