Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 104904 by bemath last updated on 24/Jul/20

4cos^2 x sin x −2sin^2 x = 3sin x  where −(π/2)≤x≤(π/2)

4cos2xsinx2sin2x=3sinxwhereπ2xπ2

Answered by bramlex last updated on 24/Jul/20

sin x (4cos^2 x−2sin x−3) = 0   { ((sin x = 0 → x_1  = 0)),((4cos^2  x −2sin x−3 = 0)) :}  4−4sin^2 x−2sin x−3 = 0  4sin^2 x+2sin x−1 = 0  sin x = ((−2 ± (√(4+16)))/8) = ((−1±(√5))/4)   { ((x_2 = 18° = (π/(10)))),((x_3 = −54°= −((3π)/(10)) ⊸◊⊸)) :}

sinx(4cos2x2sinx3)=0{sinx=0x1=04cos2x2sinx3=044sin2x2sinx3=04sin2x+2sinx1=0sinx=2±4+168=1±54{x2=18°=π10x3=54°=3π10

Answered by Dwaipayan Shikari last updated on 24/Jul/20

2sinx(2cos^2 x−sinx)=3sinx  2−2sin^2 x−sinx=(3/2)   or  sinx=0  2sin^2 x+sinx−(1/2)=0  4sin^2 x+2sinx−1=0  sinx=((−2+(√(4+16)))/8)=((−(√5)±1)/4)   or sinx=0  ⇒x=kπ  sinx=sin(π/(10))                        (  k∈Z)  x=kπ±(π/(10))  or sinx=−((((√5)+1)/4))   x=−((3π)/(10))  Solutions are {(π/(10)),0,−((3π)/(10))}

2sinx(2cos2xsinx)=3sinx22sin2xsinx=32orsinx=02sin2x+sinx12=04sin2x+2sinx1=0sinx=2+4+168=5±14orsinx=0x=kπsinx=sinπ10(kZ)x=kπ±π10orsinx=(5+14)x=3π10Solutionsare{π10,0,3π10}

Answered by 1549442205PVT last updated on 24/Jul/20

⇔sinx(4cos^(2 ) x−2sinx−3)=0  ⇔sinx[(4(1−sin^(2 ) x)−2sinx−3]=0  ⇔sinx(4sin^2 x+2sinx−1)=0  i)sinx=0⇔x=kπ .Since x∈[−(π/2),(π/2)]  ⇒x=0  ii)4sin^2 x+2sinx−1=0  ⇔sinx =((−1+(√5))/4) or sinx=((−1−(√5))/4)  a)sinx=(((√5)−1)/4)=sin(π/(10))⇒x=(π/(10))  b)sinx=((−((√5)+1))/4)=sin((−3π)/(10))⇒x=((−3π)/(10))  Thus,x∈{0,(π/(10)),((−3π)/(10))}

sinx(4cos2x2sinx3)=0sinx[(4(1sin2x)2sinx3]=0sinx(4sin2x+2sinx1)=0i)sinx=0x=kπ.Sincex[π2,π2]x=0ii)4sin2x+2sinx1=0sinx=1+54orsinx=154a)sinx=514=sinπ10x=π10b)sinx=(5+1)4=sin3π10x=3π10Thus,x{0,π10,3π10}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com