All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 104904 by bemath last updated on 24/Jul/20
4cos2xsinx−2sin2x=3sinxwhere−π2⩽x⩽π2
Answered by bramlex last updated on 24/Jul/20
sinx(4cos2x−2sinx−3)=0{sinx=0→x1=04cos2x−2sinx−3=04−4sin2x−2sinx−3=04sin2x+2sinx−1=0sinx=−2±4+168=−1±54{x2=18°=π10x3=−54°=−3π10⊸◊⊸
Answered by Dwaipayan Shikari last updated on 24/Jul/20
2sinx(2cos2x−sinx)=3sinx2−2sin2x−sinx=32orsinx=02sin2x+sinx−12=04sin2x+2sinx−1=0sinx=−2+4+168=−5±14orsinx=0⇒x=kπsinx=sinπ10(k∈Z)x=kπ±π10orsinx=−(5+14)x=−3π10Solutionsare{π10,0,−3π10}
Answered by 1549442205PVT last updated on 24/Jul/20
⇔sinx(4cos2x−2sinx−3)=0⇔sinx[(4(1−sin2x)−2sinx−3]=0⇔sinx(4sin2x+2sinx−1)=0i)sinx=0⇔x=kπ.Sincex∈[−π2,π2]⇒x=0ii)4sin2x+2sinx−1=0⇔sinx=−1+54orsinx=−1−54a)sinx=5−14=sinπ10⇒x=π10b)sinx=−(5+1)4=sin−3π10⇒x=−3π10Thus,x∈{0,π10,−3π10}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com