Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 104904 by bemath last updated on 24/Jul/20

4cos^2 x sin x −2sin^2 x = 3sin x  where −(π/2)≤x≤(π/2)

$$\mathrm{4cos}\:^{\mathrm{2}} {x}\:\mathrm{sin}\:{x}\:−\mathrm{2sin}\:^{\mathrm{2}} {x}\:=\:\mathrm{3sin}\:{x} \\ $$$${where}\:−\frac{\pi}{\mathrm{2}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$

Answered by bramlex last updated on 24/Jul/20

sin x (4cos^2 x−2sin x−3) = 0   { ((sin x = 0 → x_1  = 0)),((4cos^2  x −2sin x−3 = 0)) :}  4−4sin^2 x−2sin x−3 = 0  4sin^2 x+2sin x−1 = 0  sin x = ((−2 ± (√(4+16)))/8) = ((−1±(√5))/4)   { ((x_2 = 18° = (π/(10)))),((x_3 = −54°= −((3π)/(10)) ⊸◊⊸)) :}

$$\mathrm{sin}\:{x}\:\left(\mathrm{4cos}\:^{\mathrm{2}} {x}−\mathrm{2sin}\:{x}−\mathrm{3}\right)\:=\:\mathrm{0} \\ $$$$\begin{cases}{\mathrm{sin}\:{x}\:=\:\mathrm{0}\:\rightarrow\:{x}_{\mathrm{1}} \:=\:\mathrm{0}}\\{\mathrm{4cos}^{\mathrm{2}} \:{x}\:−\mathrm{2sin}\:{x}−\mathrm{3}\:=\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{4}−\mathrm{4sin}\:^{\mathrm{2}} {x}−\mathrm{2sin}\:{x}−\mathrm{3}\:=\:\mathrm{0} \\ $$$$\mathrm{4sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:{x}−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{sin}\:{x}\:=\:\frac{−\mathrm{2}\:\pm\:\sqrt{\mathrm{4}+\mathrm{16}}}{\mathrm{8}}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\begin{cases}{{x}_{\mathrm{2}} =\:\mathrm{18}°\:=\:\frac{\pi}{\mathrm{10}}}\\{{x}_{\mathrm{3}} =\:−\mathrm{54}°=\:−\frac{\mathrm{3}\pi}{\mathrm{10}}\:\multimap\lozenge\multimap}\end{cases} \\ $$

Answered by Dwaipayan Shikari last updated on 24/Jul/20

2sinx(2cos^2 x−sinx)=3sinx  2−2sin^2 x−sinx=(3/2)   or  sinx=0  2sin^2 x+sinx−(1/2)=0  4sin^2 x+2sinx−1=0  sinx=((−2+(√(4+16)))/8)=((−(√5)±1)/4)   or sinx=0  ⇒x=kπ  sinx=sin(π/(10))                        (  k∈Z)  x=kπ±(π/(10))  or sinx=−((((√5)+1)/4))   x=−((3π)/(10))  Solutions are {(π/(10)),0,−((3π)/(10))}

$$\mathrm{2}{sinx}\left(\mathrm{2}{cos}^{\mathrm{2}} {x}−{sinx}\right)=\mathrm{3}{sinx} \\ $$$$\mathrm{2}−\mathrm{2}{sin}^{\mathrm{2}} {x}−{sinx}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:{or}\:\:{sinx}=\mathrm{0} \\ $$$$\mathrm{2}{sin}^{\mathrm{2}} {x}+{sinx}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{4}{sin}^{\mathrm{2}} {x}+\mathrm{2}{sinx}−\mathrm{1}=\mathrm{0} \\ $$$${sinx}=\frac{−\mathrm{2}+\sqrt{\mathrm{4}+\mathrm{16}}}{\mathrm{8}}=\frac{−\sqrt{\mathrm{5}}\pm\mathrm{1}}{\mathrm{4}}\:\:\:{or}\:{sinx}=\mathrm{0}\:\:\Rightarrow{x}={k}\pi \\ $$$${sinx}={sin}\frac{\pi}{\mathrm{10}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:\:{k}\in\mathbb{Z}\right) \\ $$$${x}={k}\pi\pm\frac{\pi}{\mathrm{10}} \\ $$$${or}\:{sinx}=−\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}\right)\:\:\:{x}=−\frac{\mathrm{3}\pi}{\mathrm{10}} \\ $$$${Solutions}\:{are}\:\left\{\frac{\pi}{\mathrm{10}},\mathrm{0},−\frac{\mathrm{3}\pi}{\mathrm{10}}\right\} \\ $$

Answered by 1549442205PVT last updated on 24/Jul/20

⇔sinx(4cos^(2 ) x−2sinx−3)=0  ⇔sinx[(4(1−sin^(2 ) x)−2sinx−3]=0  ⇔sinx(4sin^2 x+2sinx−1)=0  i)sinx=0⇔x=kπ .Since x∈[−(π/2),(π/2)]  ⇒x=0  ii)4sin^2 x+2sinx−1=0  ⇔sinx =((−1+(√5))/4) or sinx=((−1−(√5))/4)  a)sinx=(((√5)−1)/4)=sin(π/(10))⇒x=(π/(10))  b)sinx=((−((√5)+1))/4)=sin((−3π)/(10))⇒x=((−3π)/(10))  Thus,x∈{0,(π/(10)),((−3π)/(10))}

$$\Leftrightarrow\mathrm{sinx}\left(\mathrm{4cos}^{\mathrm{2}\:} \mathrm{x}−\mathrm{2sinx}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{sinx}\left[\left(\mathrm{4}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}\:} \mathrm{x}\right)−\mathrm{2sinx}−\mathrm{3}\right]=\mathrm{0}\right. \\ $$$$\Leftrightarrow\mathrm{sinx}\left(\mathrm{4sin}^{\mathrm{2}} \mathrm{x}+\mathrm{2sinx}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left.\mathrm{i}\right)\mathrm{sinx}=\mathrm{0}\Leftrightarrow\mathrm{x}=\mathrm{k}\pi\:.\mathrm{Since}\:\mathrm{x}\in\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\Rightarrow\mathrm{x}=\mathrm{0} \\ $$$$\left.\mathrm{ii}\right)\mathrm{4sin}^{\mathrm{2}} \mathrm{x}+\mathrm{2sinx}−\mathrm{1}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{sinx}\:=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:\mathrm{or}\:\mathrm{sinx}=\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\left.\mathrm{a}\right)\mathrm{sinx}=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}=\mathrm{sin}\frac{\pi}{\mathrm{10}}\Rightarrow\mathrm{x}=\frac{\pi}{\mathrm{10}} \\ $$$$\left.\mathrm{b}\right)\mathrm{sinx}=\frac{−\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{4}}=\mathrm{sin}\frac{−\mathrm{3}\pi}{\mathrm{10}}\Rightarrow\mathrm{x}=\frac{−\mathrm{3}\pi}{\mathrm{10}} \\ $$$$\mathrm{Thus},\mathrm{x}\in\left\{\mathrm{0},\frac{\pi}{\mathrm{10}},\frac{−\mathrm{3}\pi}{\mathrm{10}}\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com