Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 105001 by ajfour last updated on 25/Jul/20

Commented by ajfour last updated on 25/Jul/20

If both circles have unit radius, and  regions 1, 2, 3, 4, 5 have equal areas,  find eq. of both circles.

$${If}\:{both}\:{circles}\:{have}\:{unit}\:{radius},\:{and} \\ $$$${regions}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5}\:{have}\:{equal}\:{areas}, \\ $$$${find}\:{eq}.\:{of}\:{both}\:{circles}. \\ $$

Answered by ajfour last updated on 25/Jul/20

let lower circle eq. be      (x−h)^2 +(y+k)^2 =1  upper circle eq. is then      (x+k)^2 +(y−h)^2 =1  let A(a,0)   & B(b,0)   let  x_0 =a, b  ⇒  x_0 =h±(√(1−k^2 ))  ⇒   a=h+(√(1−k^2 ))   ,   b=h−(√(1−k^2 ))   P (p,p) lies on y=x and both circles  hence   (p+k)^2 +(p−h)^2 =1  A_5 = ∫_b ^( 0) (−k+(√(1−(x−h)^2 )) )dx  A_2 +A_3  = ∫_0 ^(  a) (−k+(√(1−(x−h)^2 )) )dx  A_3  = 2∫_0 ^( p) (−k+(√(1−(x−h)^2 ))−x)dx  Now    A_2 +A_3  = 2A_5    ....(i)  &                 A_3  = A_5               ....(ii)  .....

$${let}\:{lower}\:{circle}\:{eq}.\:{be} \\ $$$$\:\:\:\:\left({x}−{h}\right)^{\mathrm{2}} +\left({y}+{k}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${upper}\:{circle}\:{eq}.\:{is}\:{then} \\ $$$$\:\:\:\:\left({x}+{k}\right)^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${let}\:{A}\left({a},\mathrm{0}\right)\:\:\:\&\:{B}\left({b},\mathrm{0}\right) \\ $$$$\:{let}\:\:{x}_{\mathrm{0}} ={a},\:{b} \\ $$$$\Rightarrow\:\:{x}_{\mathrm{0}} ={h}\pm\sqrt{\mathrm{1}−{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:{a}={h}+\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }\:\:\:,\:\:\:{b}={h}−\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }\: \\ $$$${P}\:\left({p},{p}\right)\:{lies}\:{on}\:{y}={x}\:{and}\:{both}\:{circles} \\ $$$${hence}\:\:\:\left({p}+{k}\right)^{\mathrm{2}} +\left({p}−{h}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${A}_{\mathrm{5}} =\:\int_{{b}} ^{\:\mathrm{0}} \left(−{k}+\sqrt{\mathrm{1}−\left({x}−{h}\right)^{\mathrm{2}} }\:\right){dx} \\ $$$${A}_{\mathrm{2}} +{A}_{\mathrm{3}} \:=\:\int_{\mathrm{0}} ^{\:\:{a}} \left(−{k}+\sqrt{\mathrm{1}−\left({x}−{h}\right)^{\mathrm{2}} }\:\right){dx} \\ $$$${A}_{\mathrm{3}} \:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:{p}} \left(−{k}+\sqrt{\mathrm{1}−\left({x}−{h}\right)^{\mathrm{2}} }−{x}\right){dx} \\ $$$${Now}\:\:\:\:{A}_{\mathrm{2}} +{A}_{\mathrm{3}} \:=\:\mathrm{2}{A}_{\mathrm{5}} \:\:\:....\left({i}\right)\:\:\& \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}_{\mathrm{3}} \:=\:{A}_{\mathrm{5}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com