Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105026 by mohammad17 last updated on 25/Jul/20

Answered by john santu last updated on 25/Jul/20

Q−3  (dx/dy) = (y^2 /2)−(1/(2y^2 )) = ((y^4 −1)/(2y^2 ))  length of curve   = ∫_a ^(1.5a) (√(1+((dx/dy))^2 )) dy   = ∫_a ^(1.5a) (√(1+(((y^4 −1)/(2y^2 )))^2 )) dy   = ∫_a ^(1.5a) (√((y^8 +4y^4 −2y^4 +1)/(4y^4 ))) dy  = ∫_a ^(1.5a) (1/(2y^2 )) (√((y^4 +1)^2 )) dy   =∫_a ^(1.5a) ((y^4 +1)/(2y^2 )) dy = [(1/6)y^3 −(1/(2y))]_a ^(1.5a)   (JS ♠⧫)

Q3dxdy=y2212y2=y412y2lengthofcurve=1.5aa1+(dxdy)2dy=1.5aa1+(y412y2)2dy=1.5aay8+4y42y4+14y4dy=1.5aa12y2(y4+1)2dy=1.5aay4+12y2dy=[16y312y]a1.5a(JS)

Commented by mohammad17 last updated on 25/Jul/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 25/Jul/20

2)∫_0 ^a (√(4−9x^2 ))dx  =[((3x)/2)(√(4−9x^2 ))]_0 ^a −[(((2)^2 )/2)sin^(−1) ((3x)/2)]_0 ^a   =((3a)/2)(√(4−9a^2 ))−2sin^(−1) ((3a)/2)

2)0a49x2dx=[3x249x2]0a[(2)22sin13x2]0a=3a249a22sin13a2

Commented by mohammad17 last updated on 25/Jul/20

thank you sir

thankyousir

Answered by john santu last updated on 25/Jul/20

Q−4.(1)  ∫(ax+3a)^(a+3)  dx = (1/a)∫(ax+3a)^(a+3) d(ax+3a)  [ b = ax+3a ]   (1/a)∫ b^(a+3)  db = (b^(a+4) /(a(a+4))) + c   = (((ax+3a)^(a+4) )/(a^2 +4a)) + c

Q4.(1)(ax+3a)a+3dx=1a(ax+3a)a+3d(ax+3a)[b=ax+3a]1aba+3db=ba+4a(a+4)+c=(ax+3a)a+4a2+4a+c

Answered by mathmax by abdo last updated on 25/Jul/20

4) ∫ (ax+3a)^(a+3) dx =∫a^(a+3) (x+3a)^(a+3) dx =a^(a+3)  ∫ (x+3a)^(a+3) dx  =(a^(a+3) /(a+4)) (x+3a)^(a+4)  +c

4)(ax+3a)a+3dx=aa+3(x+3a)a+3dx=aa+3(x+3a)a+3dx=aa+3a+4(x+3a)a+4+c

Commented by bemath last updated on 26/Jul/20

typo sir. (a^(a+3) /(a+4)) (x+3)^(a+4)  + c

typosir.aa+3a+4(x+3)a+4+c

Commented by mathmax by abdo last updated on 26/Jul/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 25/Jul/20

2) I =∫_0 ^a (√(4−9x^2 ))dx  =2 ∫_0 ^a (√(1−(9/4)x^2 ))dx  we do the changement  (3/2)x =sint ⇒ I =2 ∫_0 ^(arcsin(((3a)/2))) (√(1−sin^2 t))×(2/3) cost dt  =(4/3) ∫_0 ^(arcsin(((3a)/2))) cos^2 t dt =(2/3)∫_0 ^(arcsin(((3a)/2)))  (1+cos(2t))dt  =(2/3) arcsin(((3a)/2)) +(1/3)[sin(2t)]_o ^(arcsin(((3a)/2)))   =(2/3) arcsin(((3a)/2)) +(2/3)[sint (√(1−sin^2 t))]_0 ^(arcsin(((3a)/2)))   =(2/3) arcsin(((3a)/2))+(2/3){((3a)/2)(√(1−((9a^2 )/4)))}  =(2/3) arcsin(((3a)/2)) +a(√(1−((9a^2 )/4)))

2)I=0a49x2dx=20a194x2dxwedothechangement32x=sintI=20arcsin(3a2)1sin2t×23costdt=430arcsin(3a2)cos2tdt=230arcsin(3a2)(1+cos(2t))dt=23arcsin(3a2)+13[sin(2t)]oarcsin(3a2)=23arcsin(3a2)+23[sint1sin2t]0arcsin(3a2)=23arcsin(3a2)+23{3a219a24}=23arcsin(3a2)+a19a24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com