Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 105039 by bemath last updated on 25/Jul/20

(1) ∫ (dx/(x^6 −64))  (2) y′ + y tan x = sin 2x  y(0) = 1

(1)dxx664(2)y+ytanx=sin2xy(0)=1

Answered by bobhans last updated on 25/Jul/20

(2) If u(x) = e^(∫ tan (x) dx)  = e^(ln ((1/(cos x))) ) =(1/(cos x))=sec x  y(x) = ((∫ sin 2x.sec x dx + C)/(sec x))  y(x) = cos x.{∫2sin x dx + C }  y(x) = cos x. {−2cos x + C }  y(x) = −2cos^2 x + C.cos x ★  y(0) = −2+C = 1 ⇔C = 3  y(x) = −2cos^2 x+3cos x

(2)Ifu(x)=etan(x)dx=eln(1cosx)=1cosx=secxy(x)=sin2x.secxdx+Csecxy(x)=cosx.{2sinxdx+C}y(x)=cosx.{2cosx+C}y(x)=2cos2x+C.cosxy(0)=2+C=1C=3y(x)=2cos2x+3cosx

Answered by mathmax by abdo last updated on 25/Jul/20

1) complex method  we decompose F(z) =(1/(z^6 −64)) ⇒  z^6  =64   let z =re^(iθ)      so e ⇒r^6  e^(i6θ)  =64 e^(i(2kπ))  ⇒r =^6 (√(64)) =2  θ =((kπ)/3)  and k∈[[0,5]] so the roots are z_k =2e^(i((kπ)/3))  and 0≤k≤5  ⇒F(z) =(1/(Π_(k=0) ^5 (z−z_k ))) =Σ_(k=0) ^5  (a_k /(z−z_k ))  with a_k =(1/(6z_k ^5 )) =(z_k /(6(64))) =(z_k /(384))  ⇒F(z) =(1/(384)) Σ_(k=0) ^5  (z_k /(z−z_k )) ⇒∫ F(z)dz =(1/(384)) Σ_(k=0) ^5 z_k  ∫  (dz/(z−2e^((ikπ)/3) ))  =(1/(384)) Σ_(k=0) ^5  (2e^((ikπ)/3) )ln(z−2e^((ikπ)/3) )  +C

1)complexmethodwedecomposeF(z)=1z664z6=64letz=reiθsoer6ei6θ=64ei(2kπ)r=664=2θ=kπ3andk[[0,5]]sotherootsarezk=2eikπ3and0k5F(z)=1k=05(zzk)=k=05akzzkwithak=16zk5=zk6(64)=zk384F(z)=1384k=05zkzzkF(z)dz=1384k=05zkdzz2eikπ3=1384k=05(2eikπ3)ln(z2eikπ3)+C

Commented by Dwaipayan Shikari last updated on 25/Jul/20

I think it can be done with (1/(16))∫(1/(x^3 −8))−∫(1/(x^3 +8))  =(1/(16))∫(A/(x−2))+((Bx+C)/(x^2 +2x+4))−(1/(16))∫((A′)/(x+2))+((B′x+C′)/(x^2 −2x+4))

Ithinkitcanbedonewith1161x381x3+8=116Ax2+Bx+Cx2+2x+4116Ax+2+Bx+Cx22x+4

Commented by mathmax by abdo last updated on 26/Jul/20

yes its another way for tbis integral

yesitsanotherwayfortbisintegral

Answered by mathmax by abdo last updated on 25/Jul/20

y^′  +ytanx =sin(2x)  h)→y^′  =−ytanx ⇒(y^′ /y) =−tanx ⇒ln∣y∣ =−∫ ((sinx)/(cosx))dx =ln∣cosx∣ +c ⇒  y(x) =k ∣cosx∣  let find solution on {x /cosx >0}  mvc method →y^′  =k^′  cosx −ksinx   e⇒k^′  cosx−ksinx +kcosx ×((sinx)/(cosx)) =sin(2x) ⇒k^′  =((sin(2x))/(cosx)) =2sinx ⇒  k =2∫sinx dx =−2cosx +λ ⇒y(x) =(−2cosx +λ)cosx  ⇒y(x) =λcosx−sin(2x)  y(0)=1 ⇒λ−0 =1 ⇒λ =1 ⇒y(x) =cosx −sin(2x)

y+ytanx=sin(2x)h)y=ytanxyy=tanxlny=sinxcosxdx=lncosx+cy(x)=kcosxletfindsolutionon{x/cosx>0}mvcmethody=kcosxksinxekcosxksinx+kcosx×sinxcosx=sin(2x)k=sin(2x)cosx=2sinxk=2sinxdx=2cosx+λy(x)=(2cosx+λ)cosxy(x)=λcosxsin(2x)y(0)=1λ0=1λ=1y(x)=cosxsin(2x)

Answered by Dwaipayan Shikari last updated on 25/Jul/20

(dy/dx)+ytanx=sin2x  I. F=e^(∫tanxdx) =e^(log(secx)) =secx  y.secx=∫sin2xsecxdx=2∫sinx=−2cosx+C  y=−2cos^2 x+C cosx  y(x)=−2cos^2 x+Ccosx  y(0)=−2+C  C=3  y(x)=−2cos^2 x+3cosx★

dydx+ytanx=sin2xI.F=etanxdx=elog(secx)=secxy.secx=sin2xsecxdx=2sinx=2cosx+Cy=2cos2x+Ccosxy(x)=2cos2x+Ccosxy(0)=2+CC=3y(x)=2cos2x+3cosx

Answered by OlafThorendsen last updated on 25/Jul/20

(1) R(x) = (1/(x^6 −1))  R(x) = (1/((x−1)(x+1)(x^2 −x+1)(x^2 −x+1)))  ∫R(x)dx =  ∫((1/(6(x−1)))−(1/(6(x+1)))+((x−2)/(6(x^2 −x+1)))−((x+2)/(6(x^2 +x+1))))dx  = (1/6)ln∣((x−1)/(x+1))∣  +(1/(12))∫((2x−1)/(x^2 −x+1))dx−(1/(12))∫((2x+1)/(x^2 +x+1))dx  −(1/4)∫(dx/(x^2 −x+1))−(1/4)∫(dx/(x^2 +x+1))  =(1/6)ln∣((x−1)/(x+1))∣+(1/(12))ln∣((x^2 −x+1)/(x^2 +x+1))∣  −(1/3)∫(dx/((4/3)(x−(1/2))^2 +1))−(1/3)∫(dx/((4/3)(x+(1/2))^2 +1))  =(1/6)ln∣((x−1)/(x+1))∣+(1/(12))ln∣((x^2 −x+1)/(x^2 +x+1))∣  −(1/(2(√3)))arctan[(2/(√3))(x−(1/2))]−(1/(2(√3)))arctan[(2/(√3))(x+(1/2))]  arctanu+arctanv = arctan((u+v)/(1−uv))  u = (2/(√3))(x−(1/2)) and v = (2/(√3))(x+(1/2))  ((u+v)/(1−uv)) = (((4/(√3))x)/(1−(4/3)(x^2 −(1/4)))) = (((√3)x)/(1−x^2 ))  Finally :  ∫R(x)dx = (1/6)ln∣((x−1)/(x+1))∣+(1/(12))ln∣((x^2 −x+1)/(x^2 +x+1))∣−(1/(2(√3)))arctan(((√3)x)/(1−x^2 ))+C

(1)R(x)=1x61R(x)=1(x1)(x+1)(x2x+1)(x2x+1)R(x)dx=(16(x1)16(x+1)+x26(x2x+1)x+26(x2+x+1))dx=16lnx1x+1+1122x1x2x+1dx1122x+1x2+x+1dx14dxx2x+114dxx2+x+1=16lnx1x+1+112lnx2x+1x2+x+113dx43(x12)2+113dx43(x+12)2+1=16lnx1x+1+112lnx2x+1x2+x+1123arctan[23(x12)]123arctan[23(x+12)]arctanu+arctanv=arctanu+v1uvu=23(x12)andv=23(x+12)u+v1uv=43x143(x214)=3x1x2Finally:R(x)dx=16lnx1x+1+112lnx2x+1x2+x+1123arctan3x1x2+C

Commented by bemath last updated on 27/Jul/20

the question ∫ (dx/(x^6 −64)) sir

thequestiondxx664sir

Answered by OlafThorendsen last updated on 25/Jul/20

Q2.  y′cosx−(−ysinx) = cosxsin2x = 2cos^2 xsinx  ((y′cosx−(−ysinx))/(cos^2 x)) = 2sinx  (d/dx)((y/(cosx))) = 2sinx  (y/(cosx)) = −2cosx+C  y = −2cos^2 x+Ccosx  y(0) = −2+C = 1 ⇒ C = 3  y = 3cosx−2cos^2 x

Q2.ycosx(ysinx)=cosxsin2x=2cos2xsinxycosx(ysinx)cos2x=2sinxddx(ycosx)=2sinxycosx=2cosx+Cy=2cos2x+Ccosxy(0)=2+C=1C=3y=3cosx2cos2x

Answered by bramlex last updated on 26/Jul/20

(1) ∫ (dx/(x^6 −(2)^6 )) = (1/(24))ln ((((x−2)^2 (x^2 −2x+4))/((x+2)^2 (x^2 +2x+4))))−(1/(4(√3)))tan^(−1) ((2/(x^2 +2)))+C

(1)dxx6(2)6=124ln((x2)2(x22x+4)(x+2)2(x2+2x+4))143tan1(2x2+2)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com